These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38240797)
21. Enzymatic characterization of Bacillus licheniformis γ-glutamyltranspeptidase fused with N-terminally truncated forms of Bacillus sp. TS-23 α-amylase. Hu HY; Yang JC; Chen JH; Chi MC; Lin LL Enzyme Microb Technol; 2012 Jul; 51(2):86-94. PubMed ID: 22664192 [TBL] [Abstract][Full Text] [Related]
22. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase. Chen YY; Lo HF; Wang TF; Lin MG; Lin LL; Chi MC Enzyme Microb Technol; 2015; 75-76():18-24. PubMed ID: 26047911 [TBL] [Abstract][Full Text] [Related]
23. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system. Zhao X; Chen X; Xue Y; Wang X J Basic Microbiol; 2022 Jul; 62(7):824-832. PubMed ID: 35655368 [TBL] [Abstract][Full Text] [Related]
24. l-Theanine Goes Greener: A Highly Efficient Bioprocess Catalyzed by the Immobilized γ-Glutamyl Transferase from Bacillus subtilis. Robescu MS; Alcántara AR; Calvio C; Morelli CF; Speranza G; Ubiali D; Bavaro T ChemSusChem; 2023 Apr; 16(8):e202202108. PubMed ID: 36655933 [TBL] [Abstract][Full Text] [Related]
25. Comparing methods of genetic manipulation in Bacillus subtilis for expression of recombinant enzyme: Replicative or integrative (CRISPR-Cas9) plasmid? Santos KO; Costa-Filho J; Spagnol KL; Marins LF J Microbiol Methods; 2019 Sep; 164():105667. PubMed ID: 31295508 [TBL] [Abstract][Full Text] [Related]
26. The Construction of an Environmentally Friendly Super-Secreting Strain of Ferrando J; Miñana-Galbis D; Picart P Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000067 [TBL] [Abstract][Full Text] [Related]
27. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis. García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498 [TBL] [Abstract][Full Text] [Related]
28. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562 [TBL] [Abstract][Full Text] [Related]
29. [Efficient production of L-asparaginase in Yang X; Rao Y; Zhang M; Wang J; Liu W; Cai D; Chen S Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):1096-1106. PubMed ID: 36994574 [TBL] [Abstract][Full Text] [Related]
30. A mutant Bacillus subtilis gamma-glutamyltranspeptidase specialized in hydrolysis activity. Minami H; Suzuki H; Kumagai H FEMS Microbiol Lett; 2003 Jul; 224(2):169-73. PubMed ID: 12892879 [TBL] [Abstract][Full Text] [Related]
31. Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10. Zhou C; Xue Y; Ma Y Microb Cell Fact; 2018 Aug; 17(1):124. PubMed ID: 30098601 [TBL] [Abstract][Full Text] [Related]
32. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles. Chen YY; Tsai MG; Chi MC; Wang TF; Lin LL Int J Mol Sci; 2013 Feb; 14(3):4613-28. PubMed ID: 23443161 [TBL] [Abstract][Full Text] [Related]
33. Production of bioactive γ-glutamyl transpeptidase in Escherichia coli using SUMO fusion partner and application of the recombinant enzyme to L-theanine synthesis. Wang Q; Min C; Zhu F; Xin Y; Zhang S; Luo L; Yin Z Curr Microbiol; 2011 May; 62(5):1535-41. PubMed ID: 21327888 [TBL] [Abstract][Full Text] [Related]
34. From Batch to Continuous Flow Bioprocessing: Use of an Immobilized γ-Glutamyl Transferase from Robescu MS; Annunziata F; Somma V; Calvio C; Morelli CF; Speranza G; Tamborini L; Ubiali D; Pinto A; Bavaro T J Agric Food Chem; 2022 Oct; 70(42):13692-13699. PubMed ID: 36149987 [TBL] [Abstract][Full Text] [Related]
35. Activation and thermal stabilization of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis ATCC 27811 by monovalent cations. Lin LL; Lu BY; Chi MC; Huang YF; Lin MG; Wang TF Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1991-2006. PubMed ID: 35230495 [TBL] [Abstract][Full Text] [Related]
36. [Dual promoters enhance heterologous enzyme production from bacterial phage based recombinant Bacillus subtilis]. Liu G; Zhang Y; Xing M Sheng Wu Gong Cheng Xue Bao; 2006 Mar; 22(2):191-7. PubMed ID: 16607942 [TBL] [Abstract][Full Text] [Related]
37. Metabolic engineering of Bacillus subtilis for l-valine overproduction. Westbrook AW; Ren X; Moo-Young M; Chou CP Biotechnol Bioeng; 2018 Nov; 115(11):2778-2792. PubMed ID: 29981237 [TBL] [Abstract][Full Text] [Related]
38. Construction of a highly active secretory expression system in Bacillus subtilis of a recombinant amidase by promoter and signal peptide engineering. Kang XM; Cai X; Huang ZH; Liu ZQ; Zheng YG Int J Biol Macromol; 2020 Jan; 143():833-841. PubMed ID: 31765756 [TBL] [Abstract][Full Text] [Related]
39. Evidences on the role of the lid loop of γ-glutamyltransferases (GGT) in substrate selection. Calvio C; Romagnuolo F; Vulcano F; Speranza G; Morelli CF Enzyme Microb Technol; 2018 Jul; 114():55-62. PubMed ID: 29685354 [TBL] [Abstract][Full Text] [Related]
40. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis. Wu Y; Liu Y; Lv X; Li J; Du G; Liu L Biotechnol Bioeng; 2020 Jun; 117(6):1817-1825. PubMed ID: 32129468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]