These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38240797)
41. Development of Pgrac100-based expression vectors allowing high protein production levels in Bacillus subtilis and relatively low basal expression in Escherichia coli. Phan TT; Tran LT; Schumann W; Nguyen HD Microb Cell Fact; 2015 May; 14():72. PubMed ID: 25990516 [TBL] [Abstract][Full Text] [Related]
42. Mutational Analysis of a Highly Conserved PLSSMXP Sequence in the Small Subunit of Chi MC; Lo HF; Lin MG; Chen YY; Wang TF; Lin LL Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31546955 [TBL] [Abstract][Full Text] [Related]
43. Development of an engineered Bacillus subtilis strain for antibiotic-free sucrose isomerase production. Li M; Ren X; Xu M; Dong S; Li X; Chen X; Wang C; Yang F Biotechnol J; 2024 May; 19(5):e2400178. PubMed ID: 38719574 [TBL] [Abstract][Full Text] [Related]
44. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis. Hong KQ; Liu DY; Chen T; Wang ZW World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229 [TBL] [Abstract][Full Text] [Related]
45. Enhanced extracellular production of raw starch-degrading α-amylase in Bacillus subtilis through expression regulatory element modification and fermentation optimization. Yao D; Han X; Gao H; Wang B; Fang Z; Li H; Fang W; Xiao Y Microb Cell Fact; 2023 Jun; 22(1):118. PubMed ID: 37381017 [TBL] [Abstract][Full Text] [Related]
46. New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization. Gashtasbi F; Ahmadian G; Noghabi KA Enzyme Microb Technol; 2014 Oct; 64-65():17-23. PubMed ID: 25152412 [TBL] [Abstract][Full Text] [Related]
47. Engineering of Multiple Modules to Improve Amorphadiene Production in Song Y; He S; Abdallah II; Jopkiewicz A; Setroikromo R; van Merkerk R; Tepper PG; Quax WJ J Agric Food Chem; 2021 Apr; 69(16):4785-4794. PubMed ID: 33877851 [TBL] [Abstract][Full Text] [Related]
48. Genome-Wide CRISPRi Screening of Key Genes for Recombinant Protein Expression in Bacillus Subtilis. Zhu X; Luo H; Yu X; Lv H; Su L; Zhang K; Wu J Adv Sci (Weinh); 2024 Sep; 11(33):e2404313. PubMed ID: 38952047 [TBL] [Abstract][Full Text] [Related]
49. Production of cyclomaltodextrin glucanotransferase of Bacillus circulans var. alkalophilus ATCC21783 in B. subtilis. Paloheimo M; Haglund D; Aho S; Korhola M Appl Microbiol Biotechnol; 1992 Feb; 36(5):584-91. PubMed ID: 1368772 [TBL] [Abstract][Full Text] [Related]
50. Development of efficient enzymatic production of theanine by γ-glutamyltranspeptidase from a newly isolated strain of Bacillus subtilis, SK11.004. Shuai Y; Zhang T; Jiang B; Mu W J Sci Food Agric; 2010 Dec; 90(15):2563-7. PubMed ID: 20737539 [TBL] [Abstract][Full Text] [Related]
51. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis. Zou Y; Qiu L; Xie A; Han W; Zhang S; Li J; Zhao S; Li Y; Liang Y; Hu Y Microb Cell Fact; 2022 Aug; 21(1):173. PubMed ID: 35999638 [TBL] [Abstract][Full Text] [Related]
52. CRISPRi-Guided Multiplexed Fine-Tuning of Metabolic Flux for Enhanced Lacto- Dong X; Li N; Liu Z; Lv X; Shen Y; Li J; Du G; Wang M; Liu L J Agric Food Chem; 2020 Feb; 68(8):2477-2484. PubMed ID: 32013418 [TBL] [Abstract][Full Text] [Related]
53. Hyperproduction of γ-glutamyl transpeptidase from Bacillus licheniformis ER15 in the presence of high salt concentration. Bindal S; Gupta R Prep Biochem Biotechnol; 2017 Feb; 47(2):163-172. PubMed ID: 27186839 [TBL] [Abstract][Full Text] [Related]
54. [Construction and immobilization of recombinant Bacillus subtilis with D-allulose 3-epimerase]. Wei Y; Zhang X; Hu M; Shao Y; Pan S; Fujita M; Rao Z Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4303-4313. PubMed ID: 34984876 [TBL] [Abstract][Full Text] [Related]
55. Overexpression, one-step purification, and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Bacillus licheniformis. Lin LL; Chou PR; Hua YW; Hsu WH Appl Microbiol Biotechnol; 2006 Nov; 73(1):103-12. PubMed ID: 16850301 [TBL] [Abstract][Full Text] [Related]
56. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. Liu Y; Shi C; Li D; Chen X; Li J; Zhang Y; Yuan H; Li Y; Lu F Int J Biol Macromol; 2019 Oct; 138():903-911. PubMed ID: 31356949 [TBL] [Abstract][Full Text] [Related]
57. A genetic toolkit for efficient production of secretory protein in Bacillus subtilis. Li Y; Wu Y; Liu Y; Li J; Du G; Lv X; Liu L Bioresour Technol; 2022 Nov; 363():127885. PubMed ID: 36064082 [TBL] [Abstract][Full Text] [Related]
58. Functional role of the conserved glycine residues, Gly481 and Gly482, of the γ-glutamyltranspeptidase from Bacillus licheniformis. Chi MC; Lin MG; Chen YY; Lin LL; Wang TF Int J Biol Macromol; 2018 Apr; 109():1182-1188. PubMed ID: 29162462 [TBL] [Abstract][Full Text] [Related]
59. Enhancement of the production of Bacillus naganoensis pullulanase in recombinant Bacillus subtilis by integrative expression. Wang Y; Chen S; Zhao X; Zhang Y; Wang X; Nie Y; Xu Y Protein Expr Purif; 2019 Jul; 159():42-48. PubMed ID: 30894325 [TBL] [Abstract][Full Text] [Related]
60. Biophysical characterization of Bacillus licheniformis and Escherichia coli γ-glutamyltranspeptidases: A comparative analysis. Yang JC; Liang WC; Chen YY; Chi MC; Lo HF; Chen HL; Lin LL Int J Biol Macromol; 2011 Apr; 48(3):414-22. PubMed ID: 21238482 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]