These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38240797)
61. Semi-quantitative activity assays for high-throughput screening of higher activity gamma glutamyl transferase and enzyme immobilization to efficiently synthesize L-theanine. Yang T; Liu S; Liu H; Long M; Chen P; Zhang X; Xu M; Rao Z J Biotechnol; 2021 Mar; 330():9-16. PubMed ID: 33636215 [TBL] [Abstract][Full Text] [Related]
62. Efficient production of extracellular pullulanase in Bacillus subtilis ATCC6051 using the host strain construction and promoter optimization expression system. Liu X; Wang H; Wang B; Pan L Microb Cell Fact; 2018 Oct; 17(1):163. PubMed ID: 30348150 [TBL] [Abstract][Full Text] [Related]
63. Engineering Bacillus subtilis ATCC 6051a for the production of recombinant catalases. Ji M; Liu Y; Wu H; Li S; Duan H; Shi J; Sun J J Ind Microbiol Biotechnol; 2021 Jul; 48(5-6):. PubMed ID: 33734388 [TBL] [Abstract][Full Text] [Related]
64. Construction of a Food Grade Recombinant Bacillus subtilis Based on Replicative Plasmids with an Auxotrophic Marker for Biotransformation of d-Fructose to d-Allulose. He W; Mu W; Jiang B; Yan X; Zhang T J Agric Food Chem; 2016 Apr; 64(16):3243-50. PubMed ID: 27056339 [TBL] [Abstract][Full Text] [Related]
65. CRISPR-Cas9 mediated engineering of Bacillus licheniformis for industrial production of (2R,3S)-butanediol. Song CW; Rathnasingh C; Park JM; Kwon M; Song H Biotechnol Prog; 2021 Jan; 37(1):e3072. PubMed ID: 32964665 [TBL] [Abstract][Full Text] [Related]
66. Development and characterization of a CRISPR/Cas9n-based multiplex genome editing system for Liu D; Huang C; Guo J; Zhang P; Chen T; Wang Z; Zhao X Biotechnol Biofuels; 2019; 12():197. PubMed ID: 31572493 [TBL] [Abstract][Full Text] [Related]
67. Expanding and understanding the CRISPR toolbox for Bacillus subtilis with MAD7 and dMAD7. Price MA; Cruz R; Bryson J; Escalettes F; Rosser SJ Biotechnol Bioeng; 2020 Jun; 117(6):1805-1816. PubMed ID: 32077487 [TBL] [Abstract][Full Text] [Related]
68. Improvingthecatalytic properties and stability of immobilized γ-glutamyltranspeptidase by post-immobilization with Pharmalyte Ni F; Zhang F; Yao Z; Ye L; Sun Y; Wang H; Zhou Z; Zhu B Int J Biol Macromol; 2017 Dec; 105(Pt 3):1581-1586. PubMed ID: 28414108 [TBL] [Abstract][Full Text] [Related]
69. Site-directed mutagenesis of a conserved Asn450 residue of Bacillus licheniformis γ-glutamyltranspeptidase. Lin MG; Chi MC; Chen YY; Wang TF; Lo HF; Lin LL Int J Biol Macromol; 2016 Oct; 91():416-25. PubMed ID: 27246377 [TBL] [Abstract][Full Text] [Related]
70. Immobilization of β-galactosidase from Bacillus licheniformis for application in the dairy industry. Kuribayashi LM; do Rio Ribeiro VP; de Santana RC; Ribeiro EJ; Dos Santos MG; Falleiros LNSS; Guidini CZ Appl Microbiol Biotechnol; 2021 May; 105(9):3601-3610. PubMed ID: 33937931 [TBL] [Abstract][Full Text] [Related]
71. High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters. Liu Z; Zheng W; Ge C; Cui W; Zhou L; Zhou Z BMC Microbiol; 2019 May; 19(1):89. PubMed ID: 31064343 [TBL] [Abstract][Full Text] [Related]
72. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis. Sachla AJ; Alfonso AJ; Helmann JD Microbiol Spectr; 2021 Oct; 9(2):e0075421. PubMed ID: 34523974 [TBL] [Abstract][Full Text] [Related]
73. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. Cai D; Wei X; Qiu Y; Chen Y; Chen J; Wen Z; Chen S J Appl Microbiol; 2016 Sep; 121(3):704-12. PubMed ID: 27159567 [TBL] [Abstract][Full Text] [Related]
74. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Zhou C; Zhou H; Li D; Zhang H; Wang H; Lu F Microb Cell Fact; 2020 Feb; 19(1):45. PubMed ID: 32093734 [TBL] [Abstract][Full Text] [Related]
75. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis. Liu Y; Cheng H; Li H; Zhang Y; Wang M Appl Environ Microbiol; 2023 Jun; 89(6):e0023023. PubMed ID: 37272803 [TBL] [Abstract][Full Text] [Related]
76. A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis. Promchai R; Promdonkoy B; Tanapongpipat S; Visessanguan W; Eurwilaichitr L; Luxananil P J Biotechnol; 2016 Mar; 222():86-93. PubMed ID: 26880537 [TBL] [Abstract][Full Text] [Related]
77. Efficient secretion expression of phospholipase D in Bacillus subtilis and its application in synthesis of phosphatidylserine by enzyme immobilization. Mao S; Zhang Z; Ma X; Tian H; Lu F; Liu Y Int J Biol Macromol; 2021 Feb; 169():282-289. PubMed ID: 33333097 [TBL] [Abstract][Full Text] [Related]
78. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1. Jakutyte-Giraitiene L; Gasiunas G J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1183-8. PubMed ID: 27255973 [TBL] [Abstract][Full Text] [Related]
79. Improved inducible expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis by enhancer regulation. Deng Y; Nie Y; Zhang Y; Wang Y; Xu Y Protein Expr Purif; 2018 Aug; 148():9-15. PubMed ID: 29596990 [TBL] [Abstract][Full Text] [Related]
80. Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system. Yang M; Zhang W; Ji S; Cao P; Chen Y; Zhao X PLoS One; 2013; 8(2):e56321. PubMed ID: 23409173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]