These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38240803)

  • 1. CRISPR/Cas9 system is a suitable gene targeting editing tool to filamentous fungus Monascus pilosus.
    Gong Y; Li S; Liu Q; Chen F; Shao Y
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):154. PubMed ID: 38240803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Monacolin K in
    Dai W; Shao Y; Chen F
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33918292
    [No Abstract]   [Full Text] [Related]  

  • 3. Promotion of Monacolin K production by Agrobacterium tumefaciens-mediated transformation in Monascus albidus 9901.
    Wang L; Wang W; Xu G
    Curr Microbiol; 2011 Feb; 62(2):501-7. PubMed ID: 20717674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A newly constructed Agrobacterium-mediated transformation system based on the hisB auxotrophic marker for genetic manipulation in Aspergillus niger.
    Thai HD; Do LTBX; Nguyen XT; Vu TX; Tran HTT; Nguyen HQ; Tran VT
    Arch Microbiol; 2023 Apr; 205(5):183. PubMed ID: 37032362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An oxidoreductase gene CtnD involved in citrinin biosynthesis in Monascus purpureus verified by CRISPR/Cas9 gene editing and overexpression.
    Tang G; Man H; Wang J; Zou J; Zhao J; Han J
    Mycotoxin Res; 2023 Aug; 39(3):247-259. PubMed ID: 37269452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone lysine methyltransferases MpDot1 and MpSet9 are involved in the production of lovastatin and MonAzPs by histone crosstalk modification.
    Gong Y; Li S; Zhou Y; Chen F; Shao Y
    Int J Biol Macromol; 2024 Jan; 255():128208. PubMed ID: 37979745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S; Zhang R; Song G; Gao J; Li W; Han X; Chen M; Li Y; Li G
    BMC Plant Biol; 2018 Nov; 18(1):302. PubMed ID: 30477421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 and Agrobacterium tumefaciens virulence proteins synergistically increase efficiency of precise genome editing via homology directed repair in plants.
    Tang Y; Zhang Z; Yang Z; Wu J
    J Exp Bot; 2023 Jun; 74(12):3518-3530. PubMed ID: 36919203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient gene targeting in ligase IV-deficient Monascus ruber M7 by perturbing the non-homologous end joining pathway.
    He Y; Shao Y; Chen F
    Fungal Biol; 2014; 118(9-10):846-54. PubMed ID: 25209642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of mokB involved in monacolin K biosynthesis in Monascus pilosus.
    Sakai K; Kinoshita H; Nihira T
    Biotechnol Lett; 2009 Dec; 31(12):1911-6. PubMed ID: 19693441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergence of metabolites in three phylogenetically close Monascus species (M. pilosus, M. ruber, and M. purpureus) based on secondary metabolite biosynthetic gene clusters.
    Higa Y; Kim YS; Altaf-Ul-Amin M; Huang M; Ono N; Kanaya S
    BMC Genomics; 2020 Oct; 21(1):679. PubMed ID: 32998685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus.
    Chen YP; Yuan GF; Hsieh SY; Lin YS; Wang WY; Liaw LL; Tseng CP
    J Agric Food Chem; 2010 Jan; 58(1):287-93. PubMed ID: 19968298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus.
    Chen YP; Tseng CP; Liaw LL; Wang CL; Chen IC; Wu WJ; Wu MD; Yuan GF
    J Agric Food Chem; 2008 Jul; 56(14):5639-46. PubMed ID: 18578535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of an effective red-pigment producing Monascus pilosus by efficient transformation with aurintricarboxylic acid.
    Chen YP; Chen IC; Hwang IE; Yuan GF; Liaw LL; Tseng CP
    Biosci Biotechnol Biochem; 2008 Nov; 72(11):3021-4. PubMed ID: 18997403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex metabolic pathway engineering of Monascus pilosus enhances lovastatin production.
    Hong X; Guo T; Xu X; Lin J
    Appl Microbiol Biotechnol; 2023 Nov; 107(21):6541-6552. PubMed ID: 37672068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain improvement by overexpression of the laeA gene in Monascus pilosus for the production of monascus-fermented rice.
    Lee SS; Lee JH; Lee I
    J Microbiol Biotechnol; 2013; 23(7):959-65. PubMed ID: 23727802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion.
    Liu C; Yue Y; Xue Y; Zhou C; Ma Y
    Microb Cell Fact; 2023 Oct; 22(1):211. PubMed ID: 37838676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved natural food colorant production in the filamentous fungus Monascus ruber using CRISPR-based engineering.
    Ree Yoon H; Han S; Chul Shin S; Cheong Yeom S; Jin Kim H
    Food Res Int; 2023 May; 167():112651. PubMed ID: 37087240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobactrium tumefaciens-mediated transformation of Monascus ruber.
    Yang YJ; Lee I
    J Microbiol Biotechnol; 2008 Apr; 18(4):754-8. PubMed ID: 18467872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of monacolin K-enriched ganghwayakssuk (Artemisia princeps Pamp.) by fermentation with Monascus pilosus.
    Lee DS; Lee I
    J Microbiol Biotechnol; 2012 Jul; 22(7):975-80. PubMed ID: 22580317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.