BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38240832)

  • 1. Detection of oral mucosal lesions by the fluorescence spectroscopy and classification of cancerous stages by support vector machine.
    Kumar P; Rathod S; Pradhan A
    Lasers Med Sci; 2024 Jan; 39(1):42. PubMed ID: 38240832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vivo Testing of Oral Mucosal Lesions with an In-house Developed Portable Imaging Device and Comparison with Spectroscopy Results.
    Sah AN; Kumar P; Pradhan A
    J Fluoresc; 2023 Jul; 33(4):1375-1383. PubMed ID: 36701084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo detection of oral precancer using a fluorescence-based, in-house-fabricated device: a Mahalanobis distance-based classification.
    Kumar P; Kanaujia SK; Singh A; Pradhan A
    Lasers Med Sci; 2019 Aug; 34(6):1243-1251. PubMed ID: 30659473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Saliva as a Substitute Diagnostic Medium for the Detection of Oral Lesions Using the Stokes Shift Spectroscopy: Discrimination among the Groups by Multivariate Analysis Methods.
    Kumar P; Pradhan A
    Asian Pac J Cancer Prev; 2023 Nov; 24(11):3757-3763. PubMed ID: 38019233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of inaccessible head and neck lesions using human saliva and fluorescence spectroscopy.
    Kumar P
    Lasers Med Sci; 2022 Apr; 37(3):1821-1827. PubMed ID: 34637056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma.
    Tan Y; Yan B; Xue L; Li Y; Luo X; Ji P
    Lipids Health Dis; 2017 Apr; 16(1):73. PubMed ID: 28388900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity.
    Francisco AL; Correr WR; Azevedo LH; Kern VG; Pinto CA; Kowalski LP; Kurachi C
    Photodiagnosis Photodyn Ther; 2014 Jun; 11(2):82-90. PubMed ID: 24704941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relevance vector machine for optical diagnosis of cancer.
    Majumder SK; Ghosh N; Gupta PK
    Lasers Surg Med; 2005 Apr; 36(4):323-33. PubMed ID: 15825208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-induced autofluorescence spectral ratio reference standard for early discrimination of oral cancer.
    Mallia RJ; Thomas SS; Mathews A; Kumar R; Sebastian P; Madhavan J; Subhash N
    Cancer; 2008 Apr; 112(7):1503-12. PubMed ID: 18260154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer.
    Banerjee S; Pal M; Chakrabarty J; Petibois C; Paul RR; Giri A; Chatterjee J
    Anal Bioanal Chem; 2015 Oct; 407(26):7935-43. PubMed ID: 26342309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Saliva for Oral Precancer Detection: a Comparison of Fluorescence & Stokes Shift Spectroscopy.
    Kumar P; Singh A; Kumar Kanaujia S; Pradhan A
    J Fluoresc; 2018 Jan; 28(1):419-426. PubMed ID: 29256095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines.
    Widjaja E; Zheng W; Huang Z
    Int J Oncol; 2008 Mar; 32(3):653-62. PubMed ID: 18292943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Support vector machine for optical diagnosis of cancer.
    Majumder SK; Ghosh N; Gupta PK
    J Biomed Opt; 2005; 10(2):024034. PubMed ID: 15910107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A detection method of typical toxic mixed red tide algae in Qinhuangdao based on three-dimensional fluorescence spectroscopy.
    Wang SY; Bi WH; Li XY; Zhang BJ; Fu GW; Jin W; Jiang TJ; Zhao J; Shi WJ; Zhang YF
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 298():122704. PubMed ID: 37120954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence.
    Gillenwater A; Jacob R; Ganeshappa R; Kemp B; El-Naggar AK; Palmer JL; Clayman G; Mitchell MF; Richards-Kortum R
    Arch Otolaryngol Head Neck Surg; 1998 Nov; 124(11):1251-8. PubMed ID: 9821929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma.
    Müller MG; Valdez TA; Georgakoudi I; Backman V; Fuentes C; Kabani S; Laver N; Wang Z; Boone CW; Dasari RR; Shapshay SM; Feld MS
    Cancer; 2003 Apr; 97(7):1681-92. PubMed ID: 12655525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear pattern recognition for laser-induced fluorescence diagnosis of cancer.
    Majumder SK; Ghosh N; Kataria S; Gupta PK
    Lasers Surg Med; 2003; 33(1):48-56. PubMed ID: 12866121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive fluorescence excitation spectroscopy for the diagnosis of oral neoplasia in vivo.
    Ebenezar J; Ganesan S; Aruna P; Muralinaidu R; Renganathan K; Saraswathy TR
    J Biomed Opt; 2012 Sep; 17(9):97007-1. PubMed ID: 23085924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-Aided Detection of Incidental Lumbar Spine Fractures from Routine Dual-Energy X-Ray Absorptiometry (DEXA) Studies Using a Support Vector Machine (SVM) Classifier.
    Mehta SD; Sebro R
    J Digit Imaging; 2020 Feb; 33(1):204-210. PubMed ID: 31062114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of serum tumor markers and support vector machine in the diagnosis of oral squamous cell carcinoma].
    Zhong LP; Zhou XJ; Wei KJ; Yang X; Ma CY; Zhang CP; Zhang ZY
    Shanghai Kou Qiang Yi Xue; 2008 Oct; 17(5):457-60. PubMed ID: 18989582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.