These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 38241108)

  • 1. Dual Representation Learning for Predicting Drug-side Effect Frequency using Protein Target Information.
    Park S; Lee S; Pak M; Kim S
    IEEE J Biomed Health Inform; 2024 Jan; PP():. PubMed ID: 38241108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction.
    Xuan P; Li P; Cui H; Wang M; Nakaguchi T; Zhang T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A similarity-based deep learning approach for determining the frequencies of drug side effects.
    Zhao H; Wang S; Zheng K; Zhao Q; Zhu F; Wang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug Side-Effect Prediction Via Random Walk on the Signed Heterogeneous Drug Network.
    Hu B; Wang H; Yu Z
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of drug side effects with transductive matrix co-completion.
    Liang X; Fu Y; Qu L; Zhang P; Chen Y
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36655793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DSGAT: predicting frequencies of drug side effects by graph attention networks.
    Xu X; Yue L; Li B; Liu Y; Wang Y; Zhang W; Wang L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting synergistic anticancer drug combination based on low-rank global attention mechanism and bilinear predictor.
    Gan Y; Huang X; Guo W; Yan C; Zou G
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37812255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network.
    Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph generative and adversarial strategy-enhanced node feature learning and self-calibrated pairwise attribute encoding for prediction of drug-related side effects.
    Xuan P; Xu K; Cui H; Nakaguchi T; Zhang T
    Front Pharmacol; 2023; 14():1257842. PubMed ID: 37731739
    [No Abstract]   [Full Text] [Related]  

  • 15. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of associations between lncRNA and drug resistance based on deep learning and attention mechanism.
    Gao M; Shang X
    Front Microbiol; 2023; 14():1147778. PubMed ID: 37180267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.
    Zong N; Kim H; Ngo V; Harismendy O
    Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction.
    Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Drug-Target Interactions with Decision Templates.
    Yan XY; Zhang SW
    Curr Protein Pept Sci; 2018; 19(5):498-506. PubMed ID: 27829344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.