These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38241820)
1. Prediction of prognosis and treatment response in ovarian cancer patients from histopathology images using graph deep learning: a multicenter retrospective study. Yang Z; Zhang Y; Zhuo L; Sun K; Meng F; Zhou M; Sun J Eur J Cancer; 2024 Mar; 199():113532. PubMed ID: 38241820 [TBL] [Abstract][Full Text] [Related]
2. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning. Jang HJ; Lee A; Kang J; Song IH; Lee SH World J Gastroenterol; 2020 Oct; 26(40):6207-6223. PubMed ID: 33177794 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-based pathological prediction of lymph node metastasis for patient with renal cell carcinoma from primary whole slide images. Gao F; Jiang L; Guo T; Lin J; Xu W; Yuan L; Han Y; Yang J; Pan Q; Chen E; Zhang N; Chen S; Wang X J Transl Med; 2024 Jun; 22(1):568. PubMed ID: 38877591 [TBL] [Abstract][Full Text] [Related]
4. Exploring prognostic biomarkers in pathological images of colorectal cancer patients via deep learning. Wei B; Li L; Feng Y; Liu S; Fu P; Tian L J Pathol Clin Res; 2024 Nov; 10(6):e70003. PubMed ID: 39343999 [TBL] [Abstract][Full Text] [Related]
5. Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer. Sharma A; Weitz P; Wang Y; Liu B; Vallon-Christersson J; Hartman J; Rantalainen M Breast Cancer Res; 2024 Jan; 26(1):17. PubMed ID: 38287342 [TBL] [Abstract][Full Text] [Related]
6. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492 [TBL] [Abstract][Full Text] [Related]
7. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers. Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528 [TBL] [Abstract][Full Text] [Related]
8. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts. Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-based prediction of treatment prognosis from nasal polyp histology slides. Wang K; Ren Y; Ma L; Fan Y; Yang Z; Yang Q; Shi J; Sun Y Int Forum Allergy Rhinol; 2023 May; 13(5):886-898. PubMed ID: 36066094 [TBL] [Abstract][Full Text] [Related]
10. Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach. Jang HJ; Lee A; Kang J; Song IH; Lee SH World J Gastroenterol; 2021 Nov; 27(44):7687-7704. PubMed ID: 34908807 [TBL] [Abstract][Full Text] [Related]
11. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer. Wang S; Liu Z; Rong Y; Zhou B; Bai Y; Wei W; Wei W; Wang M; Guo Y; Tian J Radiother Oncol; 2019 Mar; 132():171-177. PubMed ID: 30392780 [TBL] [Abstract][Full Text] [Related]
12. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. Skrede OJ; De Raedt S; Kleppe A; Hveem TS; Liestøl K; Maddison J; Askautrud HA; Pradhan M; Nesheim JA; Albregtsen F; Farstad IN; Domingo E; Church DN; Nesbakken A; Shepherd NA; Tomlinson I; Kerr R; Novelli M; Kerr DJ; Danielsen HE Lancet; 2020 Feb; 395(10221):350-360. PubMed ID: 32007170 [TBL] [Abstract][Full Text] [Related]
13. Prediction of clinicopathological features, multi-omics events and prognosis based on digital pathology and deep learning in HR Hu J; Lv H; Zhao S; Lin CJ; Su GH; Shao ZM J Thorac Dis; 2023 May; 15(5):2528-2543. PubMed ID: 37324098 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional intra-tumour heterogeneity predicted by deep learning in routine breast histopathology slides provides independent prognostic information. Wang Y; Ali MA; Vallon-Christersson J; Humphreys K; Hartman J; Rantalainen M Eur J Cancer; 2023 Sep; 191():112953. PubMed ID: 37494846 [TBL] [Abstract][Full Text] [Related]
15. Deep-Learning to Predict BRCA Mutation and Survival from Digital H&E Slides of Epithelial Ovarian Cancer. Nero C; Boldrini L; Lenkowicz J; Giudice MT; Piermattei A; Inzani F; Pasciuto T; Minucci A; Fagotti A; Zannoni G; Valentini V; Scambia G Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232628 [TBL] [Abstract][Full Text] [Related]
16. Integrative deep learning analysis improves colon adenocarcinoma patient stratification at risk for mortality. Zhou J; Foroughi Pour A; Deirawan H; Daaboul F; Aung TN; Beydoun R; Ahmed FS; Chuang JH EBioMedicine; 2023 Aug; 94():104726. PubMed ID: 37499603 [TBL] [Abstract][Full Text] [Related]
17. Outcome-Supervised Deep Learning on Pathologic Whole Slide Images for Survival Prediction of Immunotherapy in Patients with Non-Small Cell Lung Cancer. Li B; Yang L; Zhang H; Li H; Jiang C; Yao Y; Cheng S; Zou B; Fan B; Dong T; Wang L Mod Pathol; 2023 Aug; 36(8):100208. PubMed ID: 37149222 [TBL] [Abstract][Full Text] [Related]
18. Improved breast cancer histological grading using deep learning. Wang Y; Acs B; Robertson S; Liu B; Solorzano L; Wählby C; Hartman J; Rantalainen M Ann Oncol; 2022 Jan; 33(1):89-98. PubMed ID: 34756513 [TBL] [Abstract][Full Text] [Related]
19. Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study. Jiang Y; Zhang Z; Yuan Q; Wang W; Wang H; Li T; Huang W; Xie J; Chen C; Sun Z; Yu J; Xu Y; Poultsides GA; Xing L; Zhou Z; Li G; Li R Lancet Digit Health; 2022 May; 4(5):e340-e350. PubMed ID: 35461691 [TBL] [Abstract][Full Text] [Related]
20. Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images. Wang CW; Chang CC; Lee YC; Lin YJ; Lo SC; Hsu PC; Liou YA; Wang CH; Chao TK Comput Med Imaging Graph; 2022 Jul; 99():102093. PubMed ID: 35752000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]