BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38241884)

  • 1. Regulation of adipogenesis by histone methyltransferases.
    Zhao Y; Skovgaard Z; Wang Q
    Differentiation; 2024; 136():100746. PubMed ID: 38241884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trimethylation of histone H3 lysine 4 impairs methylation of histone H3 lysine 9: regulation of lysine methyltransferases by physical interaction with their substrates.
    Binda O; LeRoy G; Bua DJ; Garcia BA; Gozani O; Richard S
    Epigenetics; 2010; 5(8):767-75. PubMed ID: 21124070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic regulation of adipogenesis by histone methylation.
    Ge K
    Biochim Biophys Acta; 2012 Jul; 1819(7):727-32. PubMed ID: 22240386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development.
    Jang Y; Broun A; Wang C; Park YK; Zhuang L; Lee JE; Froimchuk E; Liu C; Ge K
    Nucleic Acids Res; 2019 Jan; 47(2):607-620. PubMed ID: 30335158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic plasticity safeguards heterochromatin configuration in mammals.
    Fukuda K; Shimi T; Shimura C; Ono T; Suzuki T; Onoue K; Okayama S; Miura H; Hiratani I; Ikeda K; Okada Y; Dohmae N; Yonemura S; Inoue A; Kimura H; Shinkai Y
    Nucleic Acids Res; 2023 Jul; 51(12):6190-6207. PubMed ID: 37178005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone demethylase LSD1 regulates adipogenesis.
    Musri MM; Carmona MC; Hanzu FA; Kaliman P; Gomis R; Párrizas M
    J Biol Chem; 2010 Sep; 285(39):30034-41. PubMed ID: 20656681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitination-dependent and -independent repression of target genes by SETDB1 reveal a context-dependent role for its methyltransferase activity during adipogenesis.
    Zhang J; Matsumura Y; Kano Y; Yoshida A; Kawamura T; Hirakawa H; Inagaki T; Tanaka T; Kimura H; Yanagi S; Fukami K; Doi T; Osborne TF; Kodama T; Aburatani H; Sakai J
    Genes Cells; 2021 Jul; 26(7):513-529. PubMed ID: 33971063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of nucleosome recognition and modification by MLL methyltransferases.
    Xue H; Yao T; Cao M; Zhu G; Li Y; Yuan G; Chen Y; Lei M; Huang J
    Nature; 2019 Sep; 573(7774):445-449. PubMed ID: 31485071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic nucleosome acetylation selectively affects activity of histone methyltransferases in vitro.
    Trush VV; Feller C; Li ASM; Allali-Hassani A; Szewczyk MM; Chau I; Eram MS; Jiang B; Luu R; Zhang F; Barsyte-Lovejoy D; Aebersold R; Arrowsmith CH; Vedadi M
    Biochim Biophys Acta Gene Regul Mech; 2022 Jul; 1865(5):194845. PubMed ID: 35907431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The histone methyltransferase Suv39h regulates 3T3-L1 adipogenesis.
    Jing J; Li F; Zha L; Yang X; Wu R; Wang S; Xue B; Shi H
    Adipocyte; 2020 Dec; 9(1):401-414. PubMed ID: 32698678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis.
    Wang L; Xu S; Lee JE; Baldridge A; Grullon S; Peng W; Ge K
    EMBO J; 2013 Jan; 32(1):45-59. PubMed ID: 23178591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of histone methylation and demethylation in adipogenesis and obesity.
    Okamura M; Inagaki T; Tanaka T; Sakai J
    Organogenesis; 2010; 6(1):24-32. PubMed ID: 20592862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The macromolecular complexes of histones affect protein arginine methyltransferase activities.
    Fulton MD; Cao M; Ho MC; Zhao X; Zheng YG
    J Biol Chem; 2021 Oct; 297(4):101123. PubMed ID: 34492270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability.
    Iglesias N; Currie MA; Jih G; Paulo JA; Siuti N; Kalocsay M; Gygi SP; Moazed D
    Nature; 2018 Aug; 560(7719):504-508. PubMed ID: 30051891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On your histone mark, SET, methylate!
    Binda O
    Epigenetics; 2013 May; 8(5):457-63. PubMed ID: 23625014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A drive in SUVs: From development to disease.
    Rao VK; Pal A; Taneja R
    Epigenetics; 2017 Mar; 12(3):177-186. PubMed ID: 28106510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation.
    Lee JE; Wang C; Xu S; Cho YW; Wang L; Feng X; Baldridge A; Sartorelli V; Zhuang L; Peng W; Ge K
    Elife; 2013 Dec; 2():e01503. PubMed ID: 24368734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disorders of histone methylation: Molecular basis and clinical syndromes.
    Al Ojaimi M; Banimortada BJ; Othman A; Riedhammer KM; Almannai M; El-Hattab AW
    Clin Genet; 2022 Sep; 102(3):169-181. PubMed ID: 35713103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes.
    Zhang Q; Ramlee MK; Brunmeir R; Villanueva CJ; Halperin D; Xu F
    Cell Cycle; 2012 Dec; 11(23):4310-22. PubMed ID: 23085542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease.
    Bhat KP; Ümit Kaniskan H; Jin J; Gozani O
    Nat Rev Drug Discov; 2021 Apr; 20(4):265-286. PubMed ID: 33469207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.