BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38241949)

  • 1. Bio-net dataset: AI-based diagnostic solutions using peripheral blood smear images.
    Shams UA; Javed I; Fizan M; Shah AR; Mustafa G; Zubair M; Massoud Y; Mehmood MQ; Naveed MA
    Blood Cells Mol Dis; 2024 Mar; 105():102823. PubMed ID: 38241949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.
    Khan S; Sajjad M; Abbas N; Escorcia-Gutierrez J; Gamarra M; Muhammad K
    Comput Biol Med; 2024 May; 174():108146. PubMed ID: 38608320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning approach of automatic identification and counting of blood cells.
    Alam MM; Islam MT
    Healthc Technol Lett; 2019 Aug; 6(4):103-108. PubMed ID: 31531224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.
    Prinyakupt J; Pluempitiwiriyawej C
    Biomed Eng Online; 2015 Jun; 14():63. PubMed ID: 26123131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative assessment of deep object detection models for blood smear analysis.
    Talukdar K; Bora K; Mahanta LB; Das AK
    Tissue Cell; 2022 Jun; 76():101761. PubMed ID: 35219070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leukemia segmentation and classification: A comprehensive survey.
    Saleem S; Amin J; Sharif M; Mallah GA; Kadry S; Gandomi AH
    Comput Biol Med; 2022 Nov; 150():106028. PubMed ID: 36126356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image Processing Approach for Detection of Leukocytes in Peripheral Blood Smears.
    Hegde RB; Prasad K; Hebbar H; Singh BMK
    J Med Syst; 2019 Mar; 43(5):114. PubMed ID: 30903283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images.
    Das BK; Dutta HS
    Med Biol Eng Comput; 2020 Nov; 58(11):2789-2803. PubMed ID: 32929660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and red blood cell automated counting from blood smear images using computer-aided system.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2018 Mar; 56(3):483-489. PubMed ID: 28815426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Intelligent Model for the Detection of White Blood Cells using Artificial Intelligence.
    Anita ; Yadav A
    Comput Methods Programs Biomed; 2021 Feb; 199():105893. PubMed ID: 33333367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic patient-level recognition of four
    Guemas E; Routier B; Ghelfenstein-Ferreira T; Cordier C; Hartuis S; Marion B; Bertout S; Varlet-Marie E; Costa D; Pasquier G
    Microbiol Spectr; 2024 Feb; 12(2):e0144023. PubMed ID: 38171008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence of digital morphology analyzers improves the efficiency of manual leukocyte differentiation of peripheral blood.
    Xing Y; Liu X; Dai J; Ge X; Wang Q; Hu Z; Wu Z; Zeng X; Xu D; Qu C
    BMC Med Inform Decis Mak; 2023 Mar; 23(1):50. PubMed ID: 36991420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnosis support of sickle cell anemia by classifying red blood cell shape in peripheral blood images.
    Delgado-Font W; Escobedo-Nicot M; González-Hidalgo M; Herold-Garcia S; Jaume-I-Capó A; Mir A
    Med Biol Eng Comput; 2020 Jun; 58(6):1265-1284. PubMed ID: 32222951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithm.
    Alomari YM; Sheikh Abdullah SN; Zaharatul Azma R; Omar K
    Comput Math Methods Med; 2014; 2014():979302. PubMed ID: 24803955
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Maturana CR; de Oliveira AD; Nadal S; Serrat FZ; Sulleiro E; Ruiz E; Bilalli B; Veiga A; Espasa M; Abelló A; Suñé TP; Segú M; López-Codina D; Clols ES; Joseph-Munné J
    Front Microbiol; 2023; 14():1240936. PubMed ID: 38075929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning approach to peripheral leukocyte recognition.
    Wang Q; Bi S; Sun M; Wang Y; Wang D; Yang S
    PLoS One; 2019; 14(6):e0218808. PubMed ID: 31237896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WBC image classification and generative models based on convolutional neural network.
    Jung C; Abuhamad M; Mohaisen D; Han K; Nyang D
    BMC Med Imaging; 2022 May; 22(1):94. PubMed ID: 35596153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving blood cells classification in peripheral blood smears using enhanced incremental training.
    Al-Qudah R; Suen CY
    Comput Biol Med; 2021 Apr; 131():104265. PubMed ID: 33621895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2019 Aug; 57(8):1783-1811. PubMed ID: 31201595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-assisted smartphone-based quantitative microscopy for label-free peripheral blood smear analysis.
    Huang B; Kang L; Tsang VTC; Lo CTK; Wong TTW
    Biomed Opt Express; 2024 Apr; 15(4):2636-2651. PubMed ID: 38633093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.