BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38241949)

  • 21. White blood cells identification system based on convolutional deep neural learning networks.
    Shahin AI; Guo Y; Amin KM; Sharawi AA
    Comput Methods Programs Biomed; 2019 Jan; 168():69-80. PubMed ID: 29173802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of red and white blood cells from microscopic blood images using a region proposal approach.
    Di Ruberto C; Loddo A; Putzu L
    Comput Biol Med; 2020 Jan; 116():103530. PubMed ID: 31778895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tile-based microscopic image processing for malaria screening using a deep learning approach.
    Shewajo FA; Fante KA
    BMC Med Imaging; 2023 Mar; 23(1):39. PubMed ID: 36949382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. WBC-based segmentation and classification on microscopic images: a minor improvement.
    Lam XH; Ng KW; Yoong YJ; Ng SB
    F1000Res; 2021; 10():1168. PubMed ID: 35399225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laboratory productivity and the rate of manual peripheral blood smear review: a College of American Pathologists Q-Probes study of 95,141 complete blood count determinations performed in 263 institutions.
    Novis DA; Walsh M; Wilkinson D; St Louis M; Ben-Ezra J
    Arch Pathol Lab Med; 2006 May; 130(5):596-601. PubMed ID: 16683868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully automated detection of the counting area in blood smears for computer aided hematology.
    Rupp S; Schlarb T; Hasslmeyer E; Zerfass T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7759-62. PubMed ID: 22256137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images.
    Tavakoli S; Ghaffari A; Kouzehkanan ZM; Hosseini R
    Sci Rep; 2021 Sep; 11(1):19428. PubMed ID: 34593873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated estimation of parasitaemia of Plasmodium yoelii-infected mice by digital image analysis of Giemsa-stained thin blood smears.
    Ma C; Harrison P; Wang L; Coppel RL
    Malar J; 2010 Dec; 9():348. PubMed ID: 21122144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Decision Support System for Detection of Leukemia from Peripheral Blood Smear Images.
    Hegde RB; Prasad K; Hebbar H; Singh BMK; Sandhya I
    J Digit Imaging; 2020 Apr; 33(2):361-374. PubMed ID: 31728805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization and recognition of leukocytes in peripheral blood: A deep learning approach.
    Reena MR; Ameer PM
    Comput Biol Med; 2020 Nov; 126():104034. PubMed ID: 33068806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Examination of peripheral blood films using automated microscopy; evaluation of Diffmaster Octavia and Cellavision DM96.
    Ceelie H; Dinkelaar RB; van Gelder W
    J Clin Pathol; 2007 Jan; 60(1):72-9. PubMed ID: 16698955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a Robust Algorithm for Detection of Nuclei and Classification of White Blood Cells in Peripheral Blood Smear Images.
    Hegde RB; Prasad K; Hebbar H; Singh BMK
    J Med Syst; 2018 May; 42(6):110. PubMed ID: 29721616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy.
    Chung J; Ou X; Kulkarni RP; Yang C
    PLoS One; 2015; 10(7):e0133489. PubMed ID: 26186353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LeukocyteMask: An automated localization and segmentation method for leukocyte in blood smear images using deep neural networks.
    Fan H; Zhang F; Xi L; Li Z; Liu G; Xu Y
    J Biophotonics; 2019 Jul; 12(7):e201800488. PubMed ID: 30891934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Image analysis and artificial intelligence in infectious disease diagnostics.
    Smith KP; Kirby JE
    Clin Microbiol Infect; 2020 Oct; 26(10):1318-1323. PubMed ID: 32213317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic Detection and Counting of Blood Cells in Smear Images Using RetinaNet.
    Drałus G; Mazur D; Czmil A
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison.
    Anilkumar KK; Manoj VJ; Sagi TM
    Med Eng Phys; 2021 Dec; 98():8-19. PubMed ID: 34848042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Health technology assessment report: Computer-assisted Pap test for cervical cancer screening].
    Della Palma P; Moresco L; Giorgi Rossi P
    Epidemiol Prev; 2012; 36(5 Suppl 3):e1-43. PubMed ID: 23139174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clustering-Based Dual Deep Learning Architecture for Detecting Red Blood Cells in Malaria Diagnostic Smears.
    Kassim YM; Palaniappan K; Yang F; Poostchi M; Palaniappan N; Maude RJ; Antani S; Jaeger S
    IEEE J Biomed Health Inform; 2021 May; 25(5):1735-1746. PubMed ID: 33119516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.