These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38242406)

  • 21. Characteristics of banana B genome MADS-box family demonstrate their roles in fruit development, ripening, and stress.
    Zheng Y; Liu M; Jia C; Wang J; Xu B; Jin Z; Li W; Liu J
    Sci Rep; 2020 Nov; 10(1):20840. PubMed ID: 33257717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.
    Liu J; Liu L; Li Y; Jia C; Zhang J; Miao H; Hu W; Wang Z; Xu B; Jin Z
    Physiol Plant; 2015 Nov; 155(3):217-31. PubMed ID: 25980771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures.
    Svensson ME; Johannesson H; Engström P
    Gene; 2000 Jul; 253(1):31-43. PubMed ID: 10925200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple and integrated functions of floral C-class MADS-box genes in flower and fruit development of Physalis floridana.
    Zhao J; Gong P; Liu H; Zhang M; He C
    Plant Mol Biol; 2021 Sep; 107(1-2):101-116. PubMed ID: 34424500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative Analysis of the MADS-Box Genes Revealed Their Potential Functions for Flower and Fruit Development in Longan (
    Wang B; Hu W; Fang Y; Feng X; Fang J; Zou T; Zheng S; Ming R; Zhang J
    Front Plant Sci; 2021; 12():813798. PubMed ID: 35154209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The interaction of MADS-box transcription factors and manipulating fruit development and ripening].
    Liu JH; Xu BY; Zhang J; Jin ZQ
    Yi Chuan; 2010 Sep; 32(9):893-902. PubMed ID: 20870610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening.
    Fujisawa M; Nakano T; Shima Y; Ito Y
    Plant Cell; 2013 Feb; 25(2):371-86. PubMed ID: 23386264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.
    Bogs J; Downey MO; Harvey JS; Ashton AR; Tanner GJ; Robinson SP
    Plant Physiol; 2005 Oct; 139(2):652-63. PubMed ID: 16169968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction analysis of grapevine MIKC(c)-type MADS transcription factors and heterologous expression of putative véraison regulators in tomato.
    Mellway RD; Lund ST
    J Plant Physiol; 2013 Nov; 170(16):1424-33. PubMed ID: 23787144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extraction of condensed tannins from Mexican plant sources.
    Garcíaa R; Aguilera A; Contreras-Esquivel JC; Rodríguez R; Aguilar CN
    Z Naturforsch C J Biosci; 2008; 63(1-2):17-20. PubMed ID: 18386482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and functional annotation of the MADS-box transcription factor family in grapevine.
    Grimplet J; Martínez-Zapater JM; Carmona MJ
    BMC Genomics; 2016 Jan; 17():80. PubMed ID: 26818751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of Plant Tannin Synthesis in Crop Species.
    Mora J; Pott DM; Osorio S; Vallarino JG
    Front Genet; 2022; 13():870976. PubMed ID: 35586570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro.
    Anderson RC; Vodovnik M; Min BR; Pinchak WE; Krueger NA; Harvey RB; Nisbet DJ
    Folia Microbiol (Praha); 2012 Jul; 57(4):253-8. PubMed ID: 22528299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple interactions amongst floral homeotic MADS box proteins.
    Davies B; Egea-Cortines M; de Andrade Silva E; Saedler H; Sommer H
    EMBO J; 1996 Aug; 15(16):4330-43. PubMed ID: 8861961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit.
    Akagi T; Ikegami A; Tsujimoto T; Kobayashi S; Sato A; Kono A; Yonemori K
    Plant Physiol; 2009 Dec; 151(4):2028-45. PubMed ID: 19783643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of a laccase gene potentially involved in proanthocyanidin polymerization in Oriental persimmon (Diospyros kaki Thunb.) fruit.
    Hu Q; Luo C; Zhang Q; Luo Z
    Mol Biol Rep; 2013 Apr; 40(4):2809-20. PubMed ID: 23224657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A short history of MADS-box genes in plants.
    Theissen G; Becker A; Di Rosa A; Kanno A; Kim JT; Münster T; Winter KU; Saedler H
    Plant Mol Biol; 2000 Jan; 42(1):115-49. PubMed ID: 10688133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How Hormones and MADS-Box Transcription Factors Are Involved in Controlling Fruit Set and Parthenocarpy in Tomato.
    Molesini B; Dusi V; Pennisi F; Pandolfini T
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33265980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The condensed tannin chemistry and astringency properties of fifteen
    Ju YL; Yang L; Yue XF; He R; Deng SL; Yang X; Liu X; Fang YL
    Food Chem X; 2021 Oct; 11():100125. PubMed ID: 34278293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals.
    Alvarez-Buylla ER; Pelaz S; Liljegren SJ; Gold SE; Burgeff C; Ditta GS; Ribas de Pouplana L; Martínez-Castilla L; Yanofsky MF
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5328-33. PubMed ID: 10805792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.