BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38242420)

  • 1. Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: A review.
    Gao Y; Zhang S; Lin S; Li Z; Chen Y; Wang C
    Environ Res; 2024 Apr; 247():118216. PubMed ID: 38242420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances and challenges in anode graphite recycling from spent lithium-ion batteries.
    Niu B; Xiao J; Xu Z
    J Hazard Mater; 2022 Oct; 439():129678. PubMed ID: 36104906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery.
    He K; Zhang ZY; Zhang FS
    Waste Manag; 2021 Apr; 124():283-292. PubMed ID: 33640668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of lithium and copper from anode electrode materials of spent LIBs by acidic leaching.
    Agarwal S; Dhiman S; Gupta H
    Environ Sci Pollut Res Int; 2024 May; 31(23):34249-34257. PubMed ID: 38700765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery.
    Yang Y; Song S; Lei S; Sun W; Hou H; Jiang F; Ji X; Zhao W; Hu Y
    Waste Manag; 2019 Feb; 85():529-537. PubMed ID: 30803608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive review and comparison on pretreatment of spent lithium-ion battery.
    Gao T; Dai T; Fan N; Han Z; Gao X
    J Environ Manage; 2024 Jul; 363():121314. PubMed ID: 38843731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrometallurgical enhanced liberation and recovery of anode material from spent lithium-ion batteries.
    Li J; He Y; Fu Y; Xie W; Feng Y; Alejandro K
    Waste Manag; 2021 May; 126():517-526. PubMed ID: 33839403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upgrading anode graphite from retired lithium ion batteries via solid-phase exfoliation by mechanochemical strategy.
    Wang X; Yu H; Zhou J; Wang H
    Waste Manag; 2024 Jun; 182():102-112. PubMed ID: 38648688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials.
    Ma X; Ge P; Wang L; Sun W; Bu Y; Sun M; Yang Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition.
    Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X
    Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical strategies for recycling process of graphite from spent lithium-ion batteries: A review.
    Liu J; Shi H; Hu X; Geng Y; Yang L; Shao P; Luo X
    Sci Total Environ; 2022 Apr; 816():151621. PubMed ID: 34780818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review.
    Meshram P; Mishra A; Abhilash ; Sahu R
    Chemosphere; 2020 Mar; 242():125291. PubMed ID: 31896181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery.
    Xu R; Lei S; Wang T; Yi C; Sun W; Yang Y
    Waste Manag; 2023 Jul; 167():135-140. PubMed ID: 37262939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.