These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38242480)

  • 1. Using a metabolomics approach to investigate the sensitivity of a potential Arctic-invader and its Arctic sister-species to marine heatwaves and traditional harvesting disturbances.
    Beaudreau N; Page TM; Drolet D; McKindsey CW; Howland KL; Calosi P
    Sci Total Environ; 2024 Mar; 917():170167. PubMed ID: 38242480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomarker responses and PAH uptake in Mya truncata following exposure to oil-contaminated sediment in an Arctic fjord (Svalbard).
    Camus L; Birkely SR; Jones MB; Børseth JF; Grøsvik BE; Gulliksen B; Lønne OJ; Regoli F; Depledge MH
    Sci Total Environ; 2003 Jun; 308(1-3):221-34. PubMed ID: 12738215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the mantle transcriptome and biomineralisation genes in the blunt-gaper clam, Mya truncata.
    Sleight VA; Thorne MA; Peck LS; Arivalagan J; Berland S; Marie A; Clark MS
    Mar Genomics; 2016 Jun; 27():47-55. PubMed ID: 26777791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the size at maturity, spawning, and condition of the truncate soft-shell clam (
    Wood JM; Donovan M; Grant SM
    PeerJ; 2022; 10():e13231. PubMed ID: 35722266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial membrane composition of two Arctic marine bivalve mollusks, Serripes groenlandicus and Mya truncata.
    Gillis TE; Ballantyne JS
    Lipids; 1999 Jan; 34(1):53-7. PubMed ID: 10188597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogeography of resistance to paralytic shellfish toxins in softshell clam, Mya arenaria (L.), populations along the Atlantic coast of North America.
    Phillips JM; Bricelj VM; Mitch M; Cerrato RM; MacQuarrie S; Connell LB
    Aquat Toxicol; 2018 Sep; 202():196-206. PubMed ID: 30075308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological risk assessment of predicted marine invasions in the Canadian Arctic.
    Goldsmit J; McKindsey C; Archambault P; Howland KL
    PLoS One; 2019; 14(2):e0211815. PubMed ID: 30730941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marine heatwaves under global warming.
    Frölicher TL; Fischer EM; Gruber N
    Nature; 2018 Aug; 560(7718):360-364. PubMed ID: 30111788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of new microsatellite markers for the invasive softshell clam, Mya arenaria (L.) (Bivalvia: Myidae).
    Krapal AM; Popa OP; Iorgu EI; Costache M; Popa LO
    Int J Mol Sci; 2012; 13(2):2515-2520. PubMed ID: 22408468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How will different scenarios of rising seawater temperature alter the response of marine species to lithium?
    Santos D; Leite C; Pinto J; Soares AMVM; Pereira E; Freitas R
    Sci Total Environ; 2023 Jan; 856(Pt 1):158728. PubMed ID: 36108826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal displacement by marine heatwaves.
    Jacox MG; Alexander MA; Bograd SJ; Scott JD
    Nature; 2020 Aug; 584(7819):82-86. PubMed ID: 32760046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change opens new frontiers for marine species in the Arctic: Current trends and future invasion risks.
    Chan FT; Stanislawczyk K; Sneekes AC; Dvoretsky A; Gollasch S; Minchin D; David M; Jelmert A; Albretsen J; Bailey SA
    Glob Chang Biol; 2019 Jan; 25(1):25-38. PubMed ID: 30295388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata.
    Sleight VA; Peck LS; Dyrynda EA; Smith VJ; Clark MS
    Cell Stress Chaperones; 2018 Sep; 23(5):1003-1017. PubMed ID: 29754331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acclimation and thermal tolerance in Antarctic marine ectotherms.
    Peck LS; Morley SA; Richard J; Clark MS
    J Exp Biol; 2014 Jan; 217(Pt 1):16-22. PubMed ID: 24353200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal lipid dynamics of four Arctic bivalves: Implications for their physiological capacities to cope with future changes in coastal ecosystems.
    Bridier G; Olivier F; Grall J; Chauvaud L; Sejr MK; Tremblay R
    Ecol Evol; 2023 Nov; 13(11):e10691. PubMed ID: 37928200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shifting fish distributions in warming sub-Arctic oceans.
    Campana SE; Stefánsdóttir RB; Jakobsdóttir K; Sólmundsson J
    Sci Rep; 2020 Oct; 10(1):16448. PubMed ID: 33020548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete mitochondrial genome of the soft-shell clam Mya arenaria.
    Wilson JJ; Hefner M; Walker CW; Page ST
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3553-4. PubMed ID: 26260175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent responses to warming of two common co-occurring Mediterranean bryozoans.
    Pagès-Escolà M; Hereu B; Garrabou J; Montero-Serra I; Gori A; Gómez-Gras D; Figuerola B; Linares C
    Sci Rep; 2018 Nov; 8(1):17455. PubMed ID: 30498253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change.
    Bringloe TT; Wilkinson DP; Goldsmit J; Savoie AM; Filbee-Dexter K; Macgregor KA; Howland KL; McKindsey CW; Verbruggen H
    Glob Chang Biol; 2022 Jun; 28(11):3711-3727. PubMed ID: 35212084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.