These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38242662)

  • 1. Vortex Lattices in Active Nematics with Periodic Obstacle Arrays.
    Schimming CD; Reichhardt CJO; Reichhardt C
    Phys Rev Lett; 2024 Jan; 132(1):018301. PubMed ID: 38242662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active nematic ratchet in asymmetric obstacle arrays.
    Schimming CD; Reichhardt CJO; Reichhardt C
    Phys Rev E; 2024 Jun; 109(6-1):064602. PubMed ID: 39021011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nematic order condensation and topological defects in inertial active nematics.
    Saghatchi R; Yildiz M; Doostmohammadi A
    Phys Rev E; 2022 Jul; 106(1-1):014705. PubMed ID: 35974636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering bacterial vortex lattice via direct laser lithography.
    Nishiguchi D; Aranson IS; Snezhko A; Sokolov A
    Nat Commun; 2018 Oct; 9(1):4486. PubMed ID: 30367049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nematically Templated Vortex Lattices in Superconducting FeSe.
    Song SY; Hua C; Bell L; Ko W; Fangohr H; Yan J; Halász GB; Dumitrescu EF; Lawrie BJ; Maksymovych P
    Nano Lett; 2023 Apr; 23(7):2822-2830. PubMed ID: 36940166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact Coherent Structures and Phase Space Geometry of Preturbulent 2D Active Nematic Channel Flow.
    Wagner CG; Norton MM; Park JS; Grover P
    Phys Rev Lett; 2022 Jan; 128(2):028003. PubMed ID: 35089772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taming active turbulence with patterned soft interfaces.
    Guillamat P; Ignés-Mullol J; Sagués F
    Nat Commun; 2017 Sep; 8(1):564. PubMed ID: 28916801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistivity Tensor of Vortex-Lattice States in Josephson Junction Arrays.
    Penner AG; Flensberg K; Glazman LI; von Oppen F
    Phys Rev Lett; 2023 Nov; 131(20):206001. PubMed ID: 38039473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing optical vortex lattices in nematic liquid crystals.
    Barboza R; Bortolozzo U; Assanto G; Vidal-Henriquez E; Clerc MG; Residori S
    Phys Rev Lett; 2013 Aug; 111(9):093902. PubMed ID: 24033038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Director alignment at the nematic-isotropic interface: elastic anisotropy and active anchoring.
    Coelho RCV; Araújo NAM; Telo da Gama MM
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200394. PubMed ID: 34455836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the number of topological defects in active nematic fluids under applied shear flow.
    Li Z; Ye H; Lin J; Ouyang Z
    Eur Phys J E Soft Matter; 2024 Jun; 47(6):43. PubMed ID: 38900310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal transport within nematic liquid crystals with arrays of obstacles.
    Chen K; Gebhardt OJ; Devendra R; Drazer G; Kamien RD; Reich DH; Leheny RL
    Soft Matter; 2017 Dec; 14(1):83-91. PubMed ID: 29099121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driven topological transitions in active nematic films.
    Rivas DP; Shendruk TN; Henry RR; Reich DH; Leheny RL
    Soft Matter; 2020 Oct; 16(40):9331-9338. PubMed ID: 32935705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity gradients in two- and three-dimensional active nematics.
    Ruske LJ; Yeomans JM
    Soft Matter; 2022 Aug; 18(30):5654-5661. PubMed ID: 35861255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological defects in spherical nematics.
    Shin H; Bowick MJ; Xing X
    Phys Rev Lett; 2008 Jul; 101(3):037802. PubMed ID: 18764297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organized dynamics and the transition to turbulence of confined active nematics.
    Opathalage A; Norton MM; Juniper MPN; Langeslay B; Aghvami SA; Fraden S; Dogic Z
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4788-4797. PubMed ID: 30804207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.
    Marenduzzo D; Orlandini E; Cates ME; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031921. PubMed ID: 17930285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow patterns and defect dynamics of active nematic liquid crystals under an electric field.
    Kinoshita Y; Uchida N
    Phys Rev E; 2023 Jul; 108(1-1):014605. PubMed ID: 37583184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature and electric field on 2D nematic colloidal crystals stabilised by vortex-like topological defects.
    Zuhail KP; Dhara S
    Soft Matter; 2016 Aug; 12(32):6812-6. PubMed ID: 27445255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dancing disclinations in confined active nematics.
    Shendruk TN; Doostmohammadi A; Thijssen K; Yeomans JM
    Soft Matter; 2017 May; 13(21):3853-3862. PubMed ID: 28345089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.