BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 38242919)

  • 1. Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia.
    Ravasz D; Bui D; Nazarian S; Pallag G; Karnok N; Roberts J; Marzullo BP; Tennant DA; Greenwood B; Kitayev A; Hill C; Komlódi T; Doerrier C; Cunatova K; Fernandez-Vizarra E; Gnaiger E; Kiebish MA; Raska A; Kolev K; Czumbel B; Narain NR; Seyfried TN; Chinopoulos C
    Sci Rep; 2024 Jan; 14(1):1729. PubMed ID: 38242919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex I activity in hypoxia: implications for oncometabolism.
    Chinopoulos C
    Biochem Soc Trans; 2024 Apr; 52(2):529-538. PubMed ID: 38526218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD
    Ravasz D; Kacso G; Fodor V; Horvath K; Adam-Vizi V; Chinopoulos C
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):909-924. PubMed ID: 29746824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial diaphorases as NAD⁺ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition.
    Kiss G; Konrad C; Pour-Ghaz I; Mansour JJ; Németh B; Starkov AA; Adam-Vizi V; Chinopoulos C
    FASEB J; 2014 Apr; 28(4):1682-97. PubMed ID: 24391134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quinone dependent NADH dehydrogenation in mitochondria-like particles from Setaria digitata, a filarial parasite.
    Sivan VM; Raj RK
    Biochem Biophys Res Commun; 1992 Jul; 186(2):698-705. PubMed ID: 1497658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute sources of mitochondrial NAD
    Chinopoulos C
    Exp Neurol; 2020 May; 327():113218. PubMed ID: 32035071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria.
    Zhu QS; Beattie DS
    Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the reaction of decoupling ubiquinone with bovine mitochondrial respiratory complex I.
    Masuya T; Okuda K; Murai M; Miyoshi H
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1464-9. PubMed ID: 27140857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rotenone-insensitive reduction of quinones and nitrocompounds by mitochondrial NADH:ubiquinone reductase.
    Bironaite DA; Cenas NK; Kulys JJ
    Biochim Biophys Acta; 1991 Oct; 1060(2):203-9. PubMed ID: 1932041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant.
    Wallace BJ; Young IG
    Biochim Biophys Acta; 1977 Jul; 461(1):84-100. PubMed ID: 195602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic relationships in mitochondrial oxidative phosphorylation.
    Wilson DF; Erecińska M; Dutton PL
    Annu Rev Biophys Bioeng; 1974; 3(0):203-30. PubMed ID: 4153883
    [No Abstract]   [Full Text] [Related]  

  • 14. The consequences of a mild respiratory chain deficiency on substrate competitive oxidation in human mitochondria.
    Geromel V; Parfait B; von Kleist-Retzow JC; Chretien D; Munnich A; Rötig A; Rustin P
    Biochem Biophys Res Commun; 1997 Jul; 236(3):643-6. PubMed ID: 9245705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxidation of external NADH by an intermembrane electron transfer in mitochondria from the ubiquinone-deficient mutant E3-24 of Saccharomyces cerevisiae.
    De Santis A; Melandri BA
    Arch Biochem Biophys; 1984 Jul; 232(1):354-65. PubMed ID: 6378098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sites of inhibition of mitochondrial electron transport by rhein.
    Floridi A; Castiglione S; Bianchi C
    Biochem Pharmacol; 1989 Mar; 38(5):743-51. PubMed ID: 2522779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proline Oxidation Supports Mitochondrial ATP Production When Complex I Is Inhibited.
    Pallag G; Nazarian S; Ravasz D; Bui D; Komlódi T; Doerrier C; Gnaiger E; Seyfried TN; Chinopoulos C
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria.
    Zoccarato F; Cavallini L; Bortolami S; Alexandre A
    Biochem J; 2007 Aug; 406(1):125-9. PubMed ID: 17477844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxaloacetate regulates complex II respiration in brown fat: dependence on UCP1 expression.
    Som R; Fink BD; Yu L; Sivitz WI
    Am J Physiol Cell Physiol; 2023 Jun; 324(6):C1236-C1248. PubMed ID: 37125774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.