These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38243442)

  • 1. Reservoir computing with higher-order interactive coupled pendulums.
    Li X; Small M; Lei Y
    Phys Rev E; 2023 Dec; 108(6-1):064304. PubMed ID: 38243442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data.
    Pathak J; Lu Z; Hunt BR; Girvan M; Ott E
    Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics.
    Racca A; Magri L
    Neural Netw; 2021 Oct; 142():252-268. PubMed ID: 34034072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting.
    Ren HH; Bai YL; Fan MH; Ding L; Yue XX; Yu QH
    Phys Rev E; 2024 Feb; 109(2-1):024227. PubMed ID: 38491629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reservoir computing with logistic map.
    Arun R; Sathish Aravindh M; Venkatesan A; Lakshmanan M
    Phys Rev E; 2024 Sep; 110(3-1):034204. PubMed ID: 39425356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient forecasting of chaotic systems with block-diagonal and binary reservoir computing.
    Ma H; Prosperino D; Haluszczynski A; Räth C
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37307160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic approach for assessing the predictability of chaotic time series using reservoir computing.
    Khovanov IA
    Chaos; 2021 Aug; 31(8):083105. PubMed ID: 34470249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-free inference of unseen attractors: Reconstructing phase space features from a single noisy trajectory using reservoir computing.
    Röhm A; Gauthier DJ; Fischer I
    Chaos; 2021 Oct; 31(10):103127. PubMed ID: 34717323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting chaotic systems with very low connectivity reservoir computers.
    Griffith A; Pomerance A; Gauthier DJ
    Chaos; 2019 Dec; 29(12):123108. PubMed ID: 31893676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-informed reservoir computing for efficient time-series prediction.
    Köster F; Patel D; Wikner A; Jaurigue L; Lüdge K
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37408150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of temporal resolution on the reproduction of chaotic dynamics via reservoir computing.
    Tsuchiyama K; Röhm A; Mihana T; Horisaki R; Naruse M
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37347641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next generation reservoir computing.
    Gauthier DJ; Bollt E; Griffith A; Barbosa WAS
    Nat Commun; 2021 Sep; 12(1):5564. PubMed ID: 34548491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-learning potential of a single pendulum.
    Mandal S; Sinha S; Shrimali MD
    Phys Rev E; 2022 May; 105(5-1):054203. PubMed ID: 35706182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attractor reconstruction with reservoir computers: The effect of the reservoir's conditional Lyapunov exponents on faithful attractor reconstruction.
    Hart JD
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38579149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Good and bad predictions: Assessing and improving the replication of chaotic attractors by means of reservoir computing.
    Haluszczynski A; Räth C
    Chaos; 2019 Oct; 29(10):103143. PubMed ID: 31675800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep time-delay reservoir computing: Dynamics and memory capacity.
    Goldmann M; Köster F; Lüdge K; Yanchuk S
    Chaos; 2020 Sep; 30(9):093124. PubMed ID: 33003948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time series reconstructing using calibrated reservoir computing.
    Chen Y; Qian Y; Cui X
    Sci Rep; 2022 Sep; 12(1):16318. PubMed ID: 36175460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.