These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38243444)

  • 1. Thermalization slowing down in multidimensional Josephson junction networks.
    Lando GM; Flach S
    Phys Rev E; 2023 Dec; 108(6):L062301. PubMed ID: 38243444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lyapunov Spectrum Scaling for Classical Many-Body Dynamics Close to Integrability.
    Malishava M; Flach S
    Phys Rev Lett; 2022 Apr; 128(13):134102. PubMed ID: 35426693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical Glass and Ergodization Times in Classical Josephson Junction Chains.
    Mithun T; Danieli C; Kati Y; Flach S
    Phys Rev Lett; 2019 Feb; 122(5):054102. PubMed ID: 30822006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics.
    Sun Y; Zhou D; Rangan AV; Cai D
    J Comput Neurosci; 2010 Apr; 28(2):247-66. PubMed ID: 20020192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform semiclassical approach to fidelity decay: from weak to strong perturbation.
    Wang WG; Li B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066203. PubMed ID: 16089845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic Lyapunov modes and strong stochasticity threshold in the dynamic XY model: an alternative scenario.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016203. PubMed ID: 18351922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings.
    Heiligenthal S; Jüngling T; D'Huys O; Arroyo-Almanza DA; Soriano MC; Fischer I; Kanter I; Kinzel W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012902. PubMed ID: 23944533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic Lyapunov modes and strong stochasticity threshold in Fermi-Pasta-Ulam models.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066201. PubMed ID: 16906940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical approach to Lyapunov time: Universal scaling and thermalization.
    Liu Y; He D
    Phys Rev E; 2021 Apr; 103(4):L040203. PubMed ID: 34005992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems.
    Carretero-Gonzalez R; Orstavik S; Huke J; Broomhead DS; Stark J
    Chaos; 1999 Jun; 9(2):466-482. PubMed ID: 12779843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos.
    Pazó D; López JM; Politi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between covariant and orthogonal Lyapunov vectors.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046204. PubMed ID: 21230362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistics of Lyapunov exponent spectrum in randomly coupled Kuramoto oscillators.
    Patra SK; Ghosh A
    Phys Rev E; 2016 Mar; 93(3):032208. PubMed ID: 27078345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing weak chaos using time series of Lyapunov exponents.
    da Silva RM; Manchein C; Beims MW; Altmann EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062907. PubMed ID: 26172772
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Rodríguez A; Nobre FD; Tsallis C
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaotic dynamics from coupled magnetic monodomain and Josephson current.
    Botha AE; Shukrinov YM; Tekić J; Kolahchi MR
    Phys Rev E; 2023 Feb; 107(2-1):024205. PubMed ID: 36932612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lyapunov decay in quantum irreversibility.
    García-Mata I; Roncaglia AJ; Wisniacki DA
    Philos Trans A Math Phys Eng Sci; 2016 Jun; 374(2069):. PubMed ID: 27140966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lyapunov exponent diagrams of a 4-dimensional Chua system.
    Stegemann C; Albuquerque HA; Rubinger RM; Rech PC
    Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riemannian geometry of Hamiltonian chaos: hints for a general theory.
    Cerruti-Sola M; Ciraolo G; Franzosi R; Pettini M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046205. PubMed ID: 18999506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.