These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38243487)

  • 1. Dispersion of run-and-tumble microswimmers through disordered media.
    Saintillan D
    Phys Rev E; 2023 Dec; 108(6-1):064608. PubMed ID: 38243487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active transport of a passive colloid in a bath of run-and-tumble particles.
    Dhar T; Saintillan D
    Sci Rep; 2024 May; 14(1):11844. PubMed ID: 38783044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion of active particles in a complex environment: Role of surface scattering.
    Jakuszeit T; Croze OA; Bell S
    Phys Rev E; 2019 Jan; 99(1-1):012610. PubMed ID: 30780271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments.
    Bertrand T; Zhao Y; Bénichou O; Tailleur J; Voituriez R
    Phys Rev Lett; 2018 May; 120(19):198103. PubMed ID: 29799236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic run-and-tumble-turn dynamics.
    Loewe B; Kozhukhov T; Shendruk TN
    Soft Matter; 2024 Jan; 20(5):1133-1150. PubMed ID: 38226730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propulsion of a three-sphere microrobot in a porous medium.
    Liao CT; Lemus A; Gürbüz A; Tsang ACH; Pak OS; Daddi-Moussa-Ider A
    Phys Rev E; 2024 Jun; 109(6-2):065106. PubMed ID: 39020945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.
    Wittkowski R; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021406. PubMed ID: 22463211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pair dispersion in dilute suspension of active swimmers.
    Belan S; Kardar M
    J Chem Phys; 2019 Feb; 150(6):064907. PubMed ID: 30770005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Island hopping of active colloids.
    Tanuku VMSG; Vogel P; Palberg T; Buttinoni I
    Soft Matter; 2023 Jul; 19(29):5452-5458. PubMed ID: 37432377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of tumbling in bacterial scattering at convex obstacles.
    Jakuszeit T; Croze OA
    Phys Rev E; 2024 Apr; 109(4-1):044405. PubMed ID: 38755868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Run-and-tumble motion with steplike responses to a stochastic input.
    Dev S; Chatterjee S
    Phys Rev E; 2019 Jan; 99(1-1):012402. PubMed ID: 30780313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent properties of run-and-tumble particles: Density relaxation.
    Chakraborty T; Pradhan P
    Phys Rev E; 2024 Feb; 109(2-1):024124. PubMed ID: 38491605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Brownian particles moving in a random Lorentz gas.
    Zeitz M; Wolff K; Stark H
    Eur Phys J E Soft Matter; 2017 Feb; 40(2):23. PubMed ID: 28236113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion, sedimentation equilibrium, and harmonic trapping of run-and-tumble nanoswimmers.
    Wang Z; Chen HY; Sheng YJ; Tsao HK
    Soft Matter; 2014 May; 10(18):3209-17. PubMed ID: 24718999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Run-and-tumble bacteria slowly approaching the diffusive regime.
    Villa-Torrealba A; Chávez-Raby C; de Castro P; Soto R
    Phys Rev E; 2020 Jun; 101(6-1):062607. PubMed ID: 32688514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ideal circle microswimmers in crowded media.
    Chepizhko O; Franosch T
    Soft Matter; 2019 Jan; 15(3):452-461. PubMed ID: 30574653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusivity of E. coli-like microswimmers in confined geometries: The role of the tumbling rate.
    Guccione G; Pimponi D; Gualtieri P; Chinappi M
    Phys Rev E; 2017 Oct; 96(4-1):042603. PubMed ID: 29347505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
    Gyrya V; Lipnikov K; Aranson IS; Berlyand L
    J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaotic Swimming of Phoretic Particles.
    Hu WF; Lin TS; Rafai S; Misbah C
    Phys Rev Lett; 2019 Dec; 123(23):238004. PubMed ID: 31868429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.