BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38243509)

  • 1. Inertial migration of spherical and oblate particles in a triangular microchannel.
    Xiong J; Liu X; Feng H; Huang H
    Phys Rev E; 2023 Dec; 108(6-2):065105. PubMed ID: 38243509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial migration of aerosol particles in three-dimensional microfluidic channels.
    Qian S; Jiang M; Liu Z
    Particuology; 2021 Apr; 55():23-34. PubMed ID: 38620251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of non-Newtonian power law rheology on inertial migration of particles in channel flow.
    Hu X; Lin J; Chen D; Ku X
    Biomicrofluidics; 2020 Jan; 14(1):014105. PubMed ID: 31933715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow.
    Rosén T; Do-Quang M; Aidun CK; Lundell F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053017. PubMed ID: 26066258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulations of viscoelastic particle migration in a microchannel with triangular cross-section.
    D'Avino G
    Electrophoresis; 2021 Nov; 42(21-22):2293-2302. PubMed ID: 34080213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial Migration of Neutrally Buoyant Spherical Particles in Square Channels at Moderate and High Reynolds Numbers.
    Gao Y; Magaud P; Baldas L; Wang Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the internal structure of straight microchannels on inertial transport behavior of particles.
    Dong H; Huang L; Zhao L
    Heliyon; 2024 Apr; 10(8):e29577. PubMed ID: 38655341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial focusing in triangular microchannels with various apex angles.
    Kim JA; Kommajosula A; Choi YH; Lee JR; Jeon EC; Ganapathysubramanian B; Lee W
    Biomicrofluidics; 2020 Mar; 14(2):024105. PubMed ID: 32231759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section.
    Kim U; Kwon JY; Kim T; Cho Y
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers.
    Liu C; Hu G; Jiang X; Sun J
    Lab Chip; 2015 Feb; 15(4):1168-77. PubMed ID: 25563524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling inertial focussing using rotational motion.
    Prohm C; Zöller N; Stark H
    Eur Phys J E Soft Matter; 2014 May; 37(5):36. PubMed ID: 24839130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of Non-Spherical Particles in Square Microchannel Flows: A Review.
    Tohme T; Magaud P; Baldas L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of particle inertial migration in high particle concentration suspension flow by multi-electrodes sensing and Eulerian-Lagrangian simulation in a square microchannel.
    Zhao T; Yao J; Liu K; Takei M
    Biomicrofluidics; 2016 Mar; 10(2):024120. PubMed ID: 27158288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental studies of bubble dynamics inside a corner.
    Cui J; Chen ZP; Wang Q; Zhou TR; Corbett C
    Ultrason Sonochem; 2020 Jun; 64():104951. PubMed ID: 32106062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern Transition on Inertial Focusing of Neutrally Buoyant Particles Suspended in Rectangular Duct Flows.
    Yamashita H; Akinaga T; Sugihara-Seki M
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical studies of cross-stream migration of non-spherical particles in a quadratic flow of a viscoelastic fluid.
    Tai CW; Narsimhan V
    Soft Matter; 2022 Jun; 18(24):4613-4624. PubMed ID: 35697338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.