These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38243549)
1. Synchronization in a system of Kuramoto oscillators with distributed Gaussian noise. Campa A; Gupta S Phys Rev E; 2023 Dec; 108(6-1):064124. PubMed ID: 38243549 [TBL] [Abstract][Full Text] [Related]
2. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise. Kostin VA; Munyaev VO; Osipov GV; Smirnov LA Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795 [TBL] [Abstract][Full Text] [Related]
3. Influence of noise on the synchronization of the stochastic Kuramoto model. Bag BC; Petrosyan KG; Hu CK Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056210. PubMed ID: 18233742 [TBL] [Abstract][Full Text] [Related]
4. Synchronization in the Kuramoto model in presence of stochastic resetting. Sarkar M; Gupta S Chaos; 2022 Jul; 32(7):073109. PubMed ID: 35907730 [TBL] [Abstract][Full Text] [Related]
5. Kuramoto model with additional nearest-neighbor interactions: Existence of a nonequilibrium tricritical point. Sarkar M; Gupta S Phys Rev E; 2020 Sep; 102(3-1):032202. PubMed ID: 33075901 [TBL] [Abstract][Full Text] [Related]
6. Synchronization in cilia carpets and the Kuramoto model with local coupling: Breakup of global synchronization in the presence of noise. Solovev A; Friedrich BM Chaos; 2022 Jan; 32(1):013124. PubMed ID: 35105113 [TBL] [Abstract][Full Text] [Related]
7. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. Omel'chenko OE; Wolfrum M Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080 [TBL] [Abstract][Full Text] [Related]
8. The Sakaguchi-Kuramoto model in presence of asymmetric interactions that break phase-shift symmetry. Manoranjani M; Gupta S; Chandrasekar VK Chaos; 2021 Aug; 31(8):083130. PubMed ID: 34470257 [TBL] [Abstract][Full Text] [Related]
9. Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise. Gupta S; Campa A; Ruffo S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022123. PubMed ID: 25353438 [TBL] [Abstract][Full Text] [Related]
10. Stability and control of power grids with diluted network topology. Tumash L; Olmi S; Schöll E Chaos; 2019 Dec; 29(12):123105. PubMed ID: 31893638 [TBL] [Abstract][Full Text] [Related]
11. Kuramoto model subject to subsystem resetting: How resetting a part of the system may synchronize the whole of it. Majumder R; Chattopadhyay R; Gupta S Phys Rev E; 2024 Jun; 109(6-1):064137. PubMed ID: 39020942 [TBL] [Abstract][Full Text] [Related]
12. Route to synchronization in coupled phase oscillators with frequency-dependent coupling: Explosive or continuous? Kumar M; Gupta S Phys Rev E; 2022 Oct; 106(4-1):044310. PubMed ID: 36397479 [TBL] [Abstract][Full Text] [Related]
14. Synchronization transition in the two-dimensional Kuramoto model with dichotomous noise. Sarkar M Chaos; 2021 Aug; 31(8):083102. PubMed ID: 34470227 [TBL] [Abstract][Full Text] [Related]
15. Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies. Rougemont J; Naef F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011104. PubMed ID: 16486119 [TBL] [Abstract][Full Text] [Related]
16. Spontaneous synchronization of coupled oscillator systems with frequency adaptation. Taylor D; Ott E; Restrepo JG Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814 [TBL] [Abstract][Full Text] [Related]
17. Microscopic correlations in the finite-size Kuramoto model of coupled oscillators. Peter F; Gong CC; Pikovsky A Phys Rev E; 2019 Sep; 100(3-1):032210. PubMed ID: 31639966 [TBL] [Abstract][Full Text] [Related]
18. Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model. English LQ; Zeng Z; Mertens D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052912. PubMed ID: 26651767 [TBL] [Abstract][Full Text] [Related]
19. Equivalence of coupled networks and networks with multimodal frequency distributions: Conditions for the bimodal and trimodal case. Pietras B; Deschle N; Daffertshofer A Phys Rev E; 2016 Nov; 94(5-1):052211. PubMed ID: 27967193 [TBL] [Abstract][Full Text] [Related]