These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38243719)

  • 1. scCancer2: data-driven in-depth annotations of the tumor microenvironment at single-level resolution.
    Chen Z; Miao Y; Tan Z; Hu Q; Wu Y; Li X; Guo W; Gu J
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38243719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CTISL: a dynamic stacking multi-class classification approach for identifying cell types from single-cell RNA-seq data.
    Wang X; Chai Z; Li S; Liu Y; Li C; Jiang Y; Liu Q
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-Analysis of Human Cancer Single-Cell RNA-Seq Datasets Using the IMMUcan Database.
    Camps J; Noël F; Liechti R; Massenet-Regad L; Rigade S; Götz L; Hoffmann C; Amblard E; Saichi M; Ibrahim MM; Pollard J; Medvedovic J; Roider HG; Soumelis V
    Cancer Res; 2023 Feb; 83(3):363-373. PubMed ID: 36459564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets.
    Yuan M; Chen L; Deng M
    Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment.
    Han Y; Wang Y; Dong X; Sun D; Liu Z; Yue J; Wang H; Li T; Wang C
    Nucleic Acids Res; 2023 Jan; 51(D1):D1425-D1431. PubMed ID: 36321662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization.
    Yan X; Zheng R; Chen J; Li M
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37584660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement.
    Guo Q; Yuan M; Zhang L; Deng M
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TMExplorer: A tumour microenvironment single-cell RNAseq database and search tool.
    Christensen E; Naidas A; Chen D; Husic M; Shooshtari P
    PLoS One; 2022; 17(9):e0272302. PubMed ID: 36084081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scCancer: a package for automated processing of single-cell RNA-seq data in cancer.
    Guo W; Wang D; Wang S; Shan Y; Liu C; Gu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vaeda computationally annotates doublets in single-cell RNA sequencing data.
    Schriever H; Kostka D
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data.
    Yuan M; Wan H; Wang Z; Guo Q; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38279647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling major histocompatibility complex-mediated pan-cancer immune features by integrated single-cell and bulk RNA sequencing.
    Feng HR; Shen XN; Zhu XM; Zhong WT; Zhu DX; Zhao J; Chen YJ; Shen F; Liu K; Liang L
    Cancer Lett; 2024 Aug; 597():217062. PubMed ID: 38878852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux.
    Huang Y; Mohanty V; Dede M; Tsai K; Daher M; Li L; Rezvani K; Chen K
    Nat Commun; 2023 Aug; 14(1):4883. PubMed ID: 37573313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.