These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38243719)

  • 21. deCS: A Tool for Systematic Cell Type Annotations of Single-cell RNA Sequencing Data among Human Tissues.
    Pei G; Yan F; Simon LM; Dai Y; Jia P; Zhao Z
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):370-384. PubMed ID: 35470070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD).
    Chiu YJ; Ni CE; Huang YH
    BMC Med Genomics; 2023 Oct; 16(Suppl 2):272. PubMed ID: 37907883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features.
    Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J
    Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-Cell RNA Sequencing for Studying Human Cancers.
    Aran D
    Annu Rev Biomed Data Sci; 2023 Aug; 6():1-22. PubMed ID: 37040737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq.
    Zhang D; Lu W; Cui S; Mei H; Wu X; Zhuo Z
    J Ovarian Res; 2022 Nov; 15(1):123. PubMed ID: 36424614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping and Validation of scRNA-Seq-Derived Cell-Cell Communication Networks in the Tumor Microenvironment.
    Bridges K; Miller-Jensen K
    Front Immunol; 2022; 13():885267. PubMed ID: 35572582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of single-cell RNAseq labelling algorithms using cancer datasets.
    Christensen E; Luo P; Turinsky A; Husić M; Mahalanabis A; Naidas A; Diaz-Mejia JJ; Brudno M; Pugh T; Ramani A; Shooshtari P
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CIForm as a Transformer-based model for cell-type annotation of large-scale single-cell RNA-seq data.
    Xu J; Zhang A; Liu F; Chen L; Zhang X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37200157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve.
    Charytonowicz D; Brody R; Sebra R
    Nat Commun; 2023 Mar; 14(1):1350. PubMed ID: 36906603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline.
    Mikolajewicz N; Gacesa R; Aguilera-Uribe M; Brown KR; Moffat J; Han H
    Commun Biol; 2022 Oct; 5(1):1142. PubMed ID: 36307536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CaSTLe - Classification of single cells by transfer learning: Harnessing the power of publicly available single cell RNA sequencing experiments to annotate new experiments.
    Lieberman Y; Rokach L; Shay T
    PLoS One; 2018; 13(10):e0205499. PubMed ID: 30304022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm.
    Baruzzo G; Cesaro G; Di Camillo B
    Bioinformatics; 2022 Mar; 38(7):1920-1929. PubMed ID: 35043939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. webSCST: an interactive web application for single-cell RNA-sequencing data and spatial transcriptomic data integration.
    Zhang Z; Cui F; Su W; Dou L; Xu A; Cao C; Zou Q
    Bioinformatics; 2022 Jun; 38(13):3488-3489. PubMed ID: 35604082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.