BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38243780)

  • 1. Phosphorus removal from agricultural tile drainage effluent with activated alumina in novel adsorption reactors.
    Husk B; Balch G; Sanchez JS; Ejack L; Whalen JK
    J Environ Qual; 2024; 53(2):220-231. PubMed ID: 38243780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending vegetative cover with cover crops influenced phosphorus loss from an agricultural watershed.
    Hanrahan BR; Tank JL; Speir SL; Trentman MT; Christopher SF; Mahl UH; Royer TV
    Sci Total Environ; 2021 Dec; 801():149501. PubMed ID: 34438141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cover crops differentially influenced nitrogen and phosphorus loss in tile drainage and surface runoff from agricultural fields in Ohio, USA.
    Hanrahan BR; King KW; Duncan EW; Shedekar VS
    J Environ Manage; 2021 Sep; 293():112910. PubMed ID: 34098350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tile Drainage as a Hydrologic Pathway for Phosphorus Export from an Agricultural Subwatershed.
    Michaud AR; Poirier SC; Whalen JK
    J Environ Qual; 2019 Jan; 48(1):64-72. PubMed ID: 30640348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Mitigating Phosphorus Losses from a Tile-Drained and Manured Field Using RZWQM2-P.
    Sadhukhan D; Qi Z; Zhang TQ; Tan CS; Ma L
    J Environ Qual; 2019 Jul; 48(4):995-1005. PubMed ID: 31589663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controls on subsurface nitrate and dissolved reactive phosphorus losses from agricultural fields during precipitation-driven events.
    Hanrahan BR; King KW; Williams MR
    Sci Total Environ; 2021 Feb; 754():142047. PubMed ID: 33254852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures.
    Tanner CC; Sukias JP
    J Environ Qual; 2011; 40(2):620-33. PubMed ID: 21520769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High flow event induced the subsurface transport of particulate phosphorus and its speciation in agricultural tile drainage system.
    Jiang X; Livi KJT; Arenberg MR; Chen A; Chen KY; Gentry L; Li Z; Xu S; Arai Y
    Chemosphere; 2021 Jan; 263():128147. PubMed ID: 33297134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field.
    Chrétien F; Giroux I; Thériault G; Gagnon P; Corriveau J
    Environ Pollut; 2017 May; 224():255-264. PubMed ID: 28209433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.
    Smith DR; King KW; Johnson L; Francesconi W; Richards P; Baker D; Sharpley AN
    J Environ Qual; 2015 Mar; 44(2):495-502. PubMed ID: 26023968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT).
    Guo T; Confesor R; Saleh A; King K
    Sci Total Environ; 2020 Jul; 726():138485. PubMed ID: 32315850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of systematic tile drainage to watershed-scale phosphorus transport.
    King KW; Williams MR; Fausey NR
    J Environ Qual; 2015 Mar; 44(2):486-94. PubMed ID: 26023967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural estrogen emissions to subsurface tile drains from experimental grassland fields in Switzerland after application of livestock slurries and free compounds.
    Rechsteiner D; Wettstein FE; Pfeiffer N; Hollender J; Bucheli TD
    Sci Total Environ; 2021 Jul; 779():146351. PubMed ID: 33743455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using AnnAGNPS to Predict the Effects of Tile Drainage Control on Nutrient and Sediment Loads for a River Basin.
    Que Z; Seidou O; Droste RL; Wilkes G; Sunohara M; Topp E; Lapen DR
    J Environ Qual; 2015 Mar; 44(2):629-41. PubMed ID: 26023981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Legacy phosphorus concentration-discharge relationships in surface runoff and tile drainage from Ohio crop fields.
    Osterholz WR; Hanrahan BR; King KW
    J Environ Qual; 2020 May; 49(3):675-687. PubMed ID: 33016383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ bioreactors and deep drain-pipe installation to reduce nitrate losses in artificially drained fields.
    Jaynes DB; Kaspar TC; Moorman TB; Parkin TB
    J Environ Qual; 2008; 37(2):429-36. PubMed ID: 18268306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of ecosystem services from edge-of-field practices in tile-drained agricultural systems in the United States Corn Belt Region.
    Mitchell ME; Newcomer-Johnson T; Christensen J; Crumpton W; Dyson B; Canfield TJ; Helmers M; Forshay KJ
    J Environ Manage; 2023 Dec; 348():119220. PubMed ID: 37866183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the concept of control points for dissolved reactive phosphorus losses in subsurface drainage.
    Alves de Oliveira L; Muñoz Ventura A; Preza-Fontes G; Greer KD; Pittelkow CM; Bhattarai R; Christianson R; Christianson L
    J Environ Qual; 2022 Nov; 51(6):1155-1167. PubMed ID: 35946838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.
    Gentry LE; David MB; Royer TV; Mitchell CA; Starks KM
    J Environ Qual; 2007; 36(2):408-15. PubMed ID: 17255628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus transport in agricultural subsurface drainage: a review.
    King KW; Williams MR; Macrae ML; Fausey NR; Frankenberger J; Smith DR; Kleinman PJ; Brown LC
    J Environ Qual; 2015 Mar; 44(2):467-85. PubMed ID: 26023966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.