These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38244222)
21. Feasibility study of a single breath-hold, 3D mDIXON pulse sequence for late gadolinium enhancement imaging of ischemic scar. Foley JRJ; Fent GJ; Garg P; Broadbent DA; Dobson LE; Chew PG; Brown LAE; Swoboda PP; Plein S; Higgins DM; Greenwood JP J Magn Reson Imaging; 2019 May; 49(5):1437-1445. PubMed ID: 30597661 [TBL] [Abstract][Full Text] [Related]
22. Predicting Late Gadolinium Enhancement of Acute Myocardial Infarction in Contrast-Free Cardiac Cine MRI Using Deep Generative Learning. Qi H; Qian P; Tang L; Chen B; An D; Wu LM Circ Cardiovasc Imaging; 2024 Sep; 17(9):e016786. PubMed ID: 39253820 [TBL] [Abstract][Full Text] [Related]
23. Joint Deep Learning Framework for Image Registration and Segmentation of Late Gadolinium Enhanced MRI and Cine Cardiac MRI. Upendra RR; Simon R; Linte CA Proc SPIE Int Soc Opt Eng; 2021 Feb; 11598():. PubMed ID: 34079155 [TBL] [Abstract][Full Text] [Related]
24. Left Ventricular Scar and Prognosis in Chronic Chagas Cardiomyopathy. Volpe GJ; Moreira HT; Trad HS; Wu KC; Braggion-Santos MF; Santos MK; Maciel BC; Pazin-Filho A; Marin-Neto JA; Lima JAC; Schmidt A J Am Coll Cardiol; 2018 Nov; 72(21):2567-2576. PubMed ID: 30466514 [TBL] [Abstract][Full Text] [Related]
25. High-resolution 3-dimensional late gadolinium enhancement scar imaging in surgically corrected Tetralogy of Fallot: clinical feasibility of volumetric quantification and visualization. Stirrat J; Rajchl M; Bergin L; Patton DJ; Peters T; White JA J Cardiovasc Magn Reson; 2014 Oct; 16(1):76. PubMed ID: 25315164 [TBL] [Abstract][Full Text] [Related]
26. Assessment of deep learning segmentation for real-time free-breathing cardiac magnetic resonance imaging at rest and under exercise stress. Schilling M; Unterberg-Buchwald C; Lotz J; Uecker M Sci Rep; 2024 Feb; 14(1):3754. PubMed ID: 38355969 [TBL] [Abstract][Full Text] [Related]
27. Automatic development of 3D anatomical models of border zone and core scar regions in the left ventricle. Mamalakis M; Garg P; Nelson T; Lee J; Swift AJ; Wild JM; Clayton RH Comput Med Imaging Graph; 2023 Jan; 103():102152. PubMed ID: 36525769 [TBL] [Abstract][Full Text] [Related]
28. High spatial resolution free-breathing 3D late gadolinium enhancement cardiac magnetic resonance imaging in ischaemic and non-ischaemic cardiomyopathy: quantitative assessment of scar mass and image quality. Bizino MB; Tao Q; Amersfoort J; Siebelink HJ; van den Bogaard PJ; van der Geest RJ; Lamb HJ Eur Radiol; 2018 Sep; 28(9):4027-4035. PubMed ID: 29626239 [TBL] [Abstract][Full Text] [Related]
29. Three-dimensional Deep Convolutional Neural Networks for Automated Myocardial Scar Quantification in Hypertrophic Cardiomyopathy: A Multicenter Multivendor Study. Fahmy AS; Neisius U; Chan RH; Rowin EJ; Manning WJ; Maron MS; Nezafat R Radiology; 2020 Jan; 294(1):52-60. PubMed ID: 31714190 [TBL] [Abstract][Full Text] [Related]
30. Left ventricular lead position, mechanical activation, and myocardial scar in relation to left ventricular reverse remodeling and clinical outcomes after cardiac resynchronization therapy: A feature-tracking and contrast-enhanced cardiovascular magnetic resonance study. Taylor RJ; Umar F; Panting JR; Stegemann B; Leyva F Heart Rhythm; 2016 Feb; 13(2):481-9. PubMed ID: 26498258 [TBL] [Abstract][Full Text] [Related]
31. Quality assurance of late gadolinium enhancement cardiac magnetic resonance images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimization. Zaman S; Vimalesvaran K; Chappell D; Varela M; Peters NS; Shiwani H; Knott KD; Davies RH; Moon JC; Bharath AA; Linton NW; Francis DP; Cole GD; Howard JP J Cardiovasc Magn Reson; 2024; 26(1):101040. PubMed ID: 38522522 [TBL] [Abstract][Full Text] [Related]
32. AI Cardiac MRI Scar Analysis Aids Prediction of Major Arrhythmic Events in the Multicenter DERIVATE Registry. Ghanbari F; Joyce T; Lorenzoni V; Guaricci AI; Pavon AG; Fusini L; Andreini D; Rabbat MG; Aquaro GD; Abete R; Bogaert J; Camastra G; Carigi S; Carrabba N; Casavecchia G; Censi S; Cicala G; De Cecco CN; De Lazzari M; Di Giovine G; Di Roma M; Focardi M; Gaibazzi N; Gismondi A; Gravina M; Lanzillo C; Lombardi M; Lozano-Torres J; Masi A; Moro C; Muscogiuri G; Nese A; Pradella S; Sbarbati S; Schoepf UJ; Valentini A; Crelier G; Masci PG; Pontone G; Kozerke S; Schwitter J Radiology; 2023 May; 307(3):e222239. PubMed ID: 36943075 [TBL] [Abstract][Full Text] [Related]
33. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related]
34. Machine Learning-Based Segmentation of Left Ventricular Myocardial Fibrosis from Magnetic Resonance Imaging. Zabihollahy F; Rajan S; Ukwatta E Curr Cardiol Rep; 2020 Jun; 22(8):65. PubMed ID: 32562100 [TBL] [Abstract][Full Text] [Related]
35. Prognostic Implications of Left Ventricular Scar Determined by Late Gadolinium Enhanced Cardiac Magnetic Resonance in Patients With Atrial Fibrillation. Suksaranjit P; McGann CJ; Akoum N; Biskupiak J; Stoddard GJ; Kholmovski EG; Navaravong L; Rassa A; Bieging E; Chang L; Haider I; Marrouche NF; Wilson BD Am J Cardiol; 2016 Oct; 118(7):991-7. PubMed ID: 27553101 [TBL] [Abstract][Full Text] [Related]
36. Regional Strain by Cardiac Magnetic Resonance Imaging Improves Detection of Right Ventricular Scar Compared With Late Gadolinium Enhancement on a Multimodality Scar Evaluation in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy. Zghaib T; Ghasabeh MA; Assis FR; Chrispin J; Keramati A; Misra S; Berger R; Calkins H; Kamel I; Nazarian S; Zimmerman S; Tandri H Circ Cardiovasc Imaging; 2018 Sep; 11(9):e007546. PubMed ID: 30354675 [TBL] [Abstract][Full Text] [Related]
37. Quantification of myocardial scar of different etiology using dark- and bright-blood late gadolinium enhancement cardiovascular magnetic resonance. Jada L; Holtackers RJ; Martens B; Nies HMJM; Van De Heyning CM; Botnar RM; Wildberger JE; Ismail TF; Razavi R; Chiribiri A Sci Rep; 2024 Mar; 14(1):5395. PubMed ID: 38443457 [TBL] [Abstract][Full Text] [Related]
38. Myocardial deformation imaging by two-dimensional speckle-tracking echocardiography for prediction of global and segmental functional changes after acute myocardial infarction: a comparison with late gadolinium enhancement cardiac magnetic resonance. Altiok E; Tiemann S; Becker M; Koos R; Zwicker C; Schroeder J; Kraemer N; Schoth F; Adam D; Friedman Z; Marx N; Hoffmann R J Am Soc Echocardiogr; 2014 Mar; 27(3):249-57. PubMed ID: 24368027 [TBL] [Abstract][Full Text] [Related]
39. The impact of dark-blood versus conventional bright-blood late gadolinium enhancement on the myocardial ischemic burden. Franks R; Holtackers RJ; Alskaf E; Nazir MS; Clapp B; Wildberger JE; Perera D; Plein S; Chiribiri A Eur J Radiol; 2021 Nov; 144():109947. PubMed ID: 34700091 [TBL] [Abstract][Full Text] [Related]
40. Synthetic multi-contrast late gadolinium enhancement imaging using post-contrast magnetic resonance fingerprinting. Rashid I; Al-Kindi S; Rajagopalan V; Walker J; Rajagopalan S; Seiberlich N; Hamilton JI NMR Biomed; 2024 Jan; 37(1):e5043. PubMed ID: 37740596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]