BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 38244259)

  • 1. Functional genomics and small molecules in mitochondrial neurodevelopmental disorders.
    Calame DG; Emrick LT
    Neurotherapeutics; 2024 Jan; 21(1):e00316. PubMed ID: 38244259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines.
    Alston CL; Stenton SL; Hudson G; Prokisch H; Taylor RW
    J Pathol; 2021 Jul; 254(4):430-442. PubMed ID: 33586140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Emerging Role of MitomiRs in the Pathophysiology of Human Disease.
    Duarte FV; Palmeira CM; Rolo AP
    Adv Exp Med Biol; 2015; 888():123-54. PubMed ID: 26663182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi 'omic data integration: A review of concepts, considerations, and approaches.
    Santiago-Rodriguez TM; Hollister EB
    Semin Perinatol; 2021 Oct; 45(6):151456. PubMed ID: 34256961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for dissecting the complexity of neurodevelopmental disorders.
    Sun J; Noss S; Banerjee D; Das M; Girirajan S
    Trends Genet; 2024 Feb; 40(2):187-202. PubMed ID: 37949722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platforms for biomarker analysis using high-throughput approaches in genomics, transcriptomics, proteomics, metabolomics, and bioinformatics.
    Merrick BA; London RE; Bushel PR; Grissom SF; Paules RS
    IARC Sci Publ; 2011; (163):121-42. PubMed ID: 22997859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-omic analysis of human naïve CD4+ T cells.
    Mitchell CJ; Getnet D; Kim MS; Manda SS; Kumar P; Huang TC; Pinto SM; Nirujogi RS; Iwasaki M; Shaw PG; Wu X; Zhong J; Chaerkady R; Marimuthu A; Muthusamy B; Sahasrabuddhe NA; Raju R; Bowman C; Danilova L; Cutler J; Kelkar DS; Drake CG; Prasad TS; Marchionni L; Murakami PN; Scott AF; Shi L; Thierry-Mieg J; Thierry-Mieg D; Irizarry R; Cope L; Ishihama Y; Wang C; Gowda H; Pandey A
    BMC Syst Biol; 2015 Nov; 9():75. PubMed ID: 26542228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare.
    Suravajhala P; Kogelman LJ; Kadarmideen HN
    Genet Sel Evol; 2016 Apr; 48(1):38. PubMed ID: 27130220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases.
    Sun YV; Hu YJ
    Adv Genet; 2016; 93():147-90. PubMed ID: 26915271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping.
    Vlasblom J; Jin K; Kassir S; Babu M
    J Proteomics; 2014 Apr; 100():8-24. PubMed ID: 24262152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular genetics of Alzheimer's disease and aging.
    Cacabelos R; Fernandez-Novoa L; Lombardi V; Kubota Y; Takeda M
    Methods Find Exp Clin Pharmacol; 2005 Jul; 27 Suppl A():1-573. PubMed ID: 16470248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scoping review and proposed workflow for multi-omic rare disease research.
    Kerr K; McAneney H; Smyth LJ; Bailie C; McKee S; McKnight AJ
    Orphanet J Rare Dis; 2020 Apr; 15(1):107. PubMed ID: 32345347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial medicine in the omics era.
    Rahman J; Rahman S
    Lancet; 2018 Jun; 391(10139):2560-2574. PubMed ID: 29903433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative omics approaches provide biological and clinical insights: examples from mitochondrial diseases.
    Khan S; Ince-Dunn G; Suomalainen A; Elo LL
    J Clin Invest; 2020 Jan; 130(1):20-28. PubMed ID: 31895050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of Transcriptomics Data and Metabolomic Data Using Biomedical Literature Mining and Pathway Analysis.
    Prabahar A
    Methods Mol Biol; 2022; 2496():301-316. PubMed ID: 35713871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of omic technologies to research in sepsis-associated acute kidney injury.
    Hasson D; Goldstein SL; Standage SW
    Pediatr Nephrol; 2021 May; 36(5):1075-1086. PubMed ID: 32356189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Cross-Disorder Method to Identify Novel Candidate Genes for Developmental Brain Disorders.
    Gonzalez-Mantilla AJ; Moreno-De-Luca A; Ledbetter DH; Martin CL
    JAMA Psychiatry; 2016 Mar; 73(3):275-83. PubMed ID: 26817790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the biological mechanisms of human mental disorders resulting from gene-environment interdependence using novel functional genomic approaches.
    Silveira PP; Meaney MJ
    Neurobiol Dis; 2023 Mar; 178():106008. PubMed ID: 36690304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesizing Systems Biology Knowledge from Omics Using Genome-Scale Models.
    Dahal S; Yurkovich JT; Xu H; Palsson BO; Yang L
    Proteomics; 2020 Sep; 20(17-18):e1900282. PubMed ID: 32579720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees.
    Trapp J; McAfee A; Foster LJ
    Mol Ecol; 2017 Feb; 26(3):718-739. PubMed ID: 28026896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.