These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38244422)

  • 1. Mechanical response of human thoracic spine ligaments under quasi-static loading: An experimental study.
    Wolny R; Wiczenbach T; Andrzejewska AJ; Spodnik JH
    J Mech Behav Biomed Mater; 2024 Mar; 151():106404. PubMed ID: 38244422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic mechanical properties of intact human cervical spine ligaments.
    Ivancic PC; Coe MP; Ndu AB; Tominaga Y; Carlson EJ; Rubin W; Dipl-Ing FH; Panjabi MM
    Spine J; 2007; 7(6):659-65. PubMed ID: 17998125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain rate dependent properties of human craniovertebral ligaments.
    Mattucci SF; Moulton JA; Chandrashekar N; Cronin DS
    J Mech Behav Biomed Mater; 2013 Jul; 23():71-9. PubMed ID: 23665484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intervertebral disc degeneration relates to biomechanical changes of spinal ligaments.
    Cornaz F; Widmer J; Farshad-Amacker NA; Spirig JM; Snedeker JG; Farshad M
    Spine J; 2021 Aug; 21(8):1399-1407. PubMed ID: 33901629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neck ligament strength is decreased following whiplash trauma.
    Tominaga Y; Ndu AB; Coe MP; Valenson AJ; Ivancic PC; Ito S; Rubin W; Panjabi MM
    BMC Musculoskelet Disord; 2006 Dec; 7():103. PubMed ID: 17184536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric and mechanical properties of human cervical spine ligaments.
    Yoganandan N; Kumaresan S; Pintar FA
    J Biomech Eng; 2000 Dec; 122(6):623-9. PubMed ID: 11192384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic response of human cervical spine ligaments.
    Yoganandan N; Pintar F; Butler J; Reinartz J; Sances A; Larson SJ
    Spine (Phila Pa 1976); 1989 Oct; 14(10):1102-10. PubMed ID: 2588060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of spinal fixation and destabilization on the biomechanical and histologic properties of spinal ligaments. An in vivo study.
    Kotani Y; Cunningham BW; Cappuccino A; Kaneda K; McAfee PC
    Spine (Phila Pa 1976); 1998 Mar; 23(6):672-82; discussion 682-3. PubMed ID: 9549789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain rate dependent properties of younger human cervical spine ligaments.
    Mattucci SF; Moulton JA; Chandrashekar N; Cronin DS
    J Mech Behav Biomed Mater; 2012 Jun; 10():216-26. PubMed ID: 22520433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound Shear Wave Elastography Quantitatively Assesses Tension Changes of Supraspinous/Interspinous Ligament Complex Under Varied Loads.
    Yancey M; Rbil N; Chatterjee A; Lin H; Wyles HL; Ko LM; Nwawka OK; Khormaee S
    Int J Spine Surg; 2023 Aug; 17(4):502-510. PubMed ID: 37402508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the mechanical response of damaged human cervical spine ligaments.
    Trajkovski A; Hribernik M; Kunc R; Kranjec M; Krašna S
    Clin Biomech (Bristol, Avon); 2020 May; 75():105012. PubMed ID: 32371284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphologic and biomechanical comparison of spinous processes and ligaments from scoliotic and kyphotic patients.
    Beaubien BP; Freeman AL; Buttermann GR
    J Biomech; 2016 Jan; 49(2):216-21. PubMed ID: 26726784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction.
    Chazal J; Tanguy A; Bourges M; Gaurel G; Escande G; Guillot M; Vanneuville G
    J Biomech; 1985; 18(3):167-76. PubMed ID: 3997901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human anterior and posterior cervical longitudinal ligaments possess similar tensile properties.
    Przybylski GJ; Carlin GJ; Patel PR; Woo SL
    J Orthop Res; 1996 Nov; 14(6):1005-8. PubMed ID: 8982146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments.
    Bass CR; Planchak CJ; Salzar RS; Lucas SR; Rafaels KA; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jul; 32(16):E436-42. PubMed ID: 17632382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of a new ligament of the lumbar spine: the midline interlaminar ligament.
    Simonds E; Iwanaga J; Ishak B; Reina MA; Oskouian RJ; Tubbs RS
    Spine J; 2020 Jul; 20(7):1134-1137. PubMed ID: 31830593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of aging and spinal degeneration on mechanical properties of lumbar supraspinous and interspinous ligaments.
    Iida T; Abumi K; Kotani Y; Kaneda K
    Spine J; 2002; 2(2):95-100. PubMed ID: 14588267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical properties of human lumbar spine ligaments.
    Pintar FA; Yoganandan N; Myers T; Elhagediab A; Sances A
    J Biomech; 1992 Nov; 25(11):1351-6. PubMed ID: 1400536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biomechanical properties of the anterior and posterior longitudinal ligament in the cervical spine].
    Akaishi F
    Nihon Ika Daigaku Zasshi; 1995 Aug; 62(4):360-8. PubMed ID: 7559924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loading rate effect on mechanical properties of cervical spine ligaments.
    Trajkovski A; Omerovic S; Krasna S; Prebil I
    Acta Bioeng Biomech; 2014; 16(3):13-20. PubMed ID: 25307779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.