These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38244550)

  • 1. Explainable artificial intelligence model for mortality risk prediction in the intensive care unit: a derivation and validation study.
    Hu C; Gao C; Li T; Liu C; Peng Z
    Postgrad Med J; 2024 Mar; 100(1182):219-227. PubMed ID: 38244550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission.
    Hu C; Li L; Li Y; Wang F; Hu B; Peng Z
    Infect Dis Ther; 2022 Aug; 11(4):1695-1713. PubMed ID: 35835943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study.
    Tang D; Ma C; Xu Y
    Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of interpretable machine learning for early prediction of prognosis in acute kidney injury.
    Hu C; Tan Q; Zhang Q; Li Y; Wang F; Zou X; Peng Z
    Comput Struct Biotechnol J; 2022; 20():2861-2870. PubMed ID: 35765651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based prediction of in-hospital mortality for critically ill patients with sepsis-associated acute kidney injury.
    Gao T; Nong Z; Luo Y; Mo M; Chen Z; Yang Z; Pan L
    Ren Fail; 2024 Dec; 46(1):2316267. PubMed ID: 38369749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia.
    Bu ZJ; Jiang N; Li KC; Lu ZL; Zhang N; Yan SS; Chen ZL; Hao YH; Zhang YH; Xu RB; Chi HW; Chen ZY; Liu JP; Wang D; Xu F; Liu ZL
    Medicine (Baltimore); 2024 Jul; 103(30):e38747. PubMed ID: 39058887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and validation of an explainable prediction model of acute kidney injury with prognostic implications in critically ill children: a prospective multicenter cohort study.
    Hu J; Xu J; Li M; Jiang Z; Mao J; Feng L; Miao K; Li H; Chen J; Bai Z; Li X; Lu G; Li Y
    EClinicalMedicine; 2024 Feb; 68():102409. PubMed ID: 38273888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
    Huang T; Le D; Yuan L; Xu S; Peng X
    PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of an interpretable machine learning for mortality prediction in patients with sepsis.
    He B; Qiu Z
    Front Artif Intell; 2024; 7():1348907. PubMed ID: 39040922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.
    Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J
    J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explainable ensemble machine learning model for prediction of 28-day mortality risk in patients with sepsis-associated acute kidney injury.
    Yang J; Peng H; Luo Y; Zhu T; Xie L
    Front Med (Lausanne); 2023; 10():1165129. PubMed ID: 37275353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan.
    Chan MC; Pai KC; Su SA; Wang MS; Wu CL; Chao WC
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):75. PubMed ID: 35337303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers.
    Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T
    Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning.
    Yang B; Zhu Y; Lu X; Shen C
    Front Endocrinol (Lausanne); 2022; 13():917838. PubMed ID: 35846312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan.
    Pai KC; Su SA; Chan MC; Wu CL; Chao WC
    BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study.
    Hu C; Li L; Huang W; Wu T; Xu Q; Liu J; Hu B
    Infect Dis Ther; 2022 Jun; 11(3):1117-1132. PubMed ID: 35399146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early prognosis prediction for non-variceal upper gastrointestinal bleeding in the intensive care unit: based on interpretable machine learning.
    Zhao X; Wei S; Pan Y; Qu K; Yan G; Wang X; Song Y
    Eur J Med Res; 2024 Aug; 29(1):442. PubMed ID: 39217369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.