These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 38244550)
21. Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery. Deng H; Eftekhari Z; Carlin C; Veerapong J; Fournier KF; Johnston FM; Dineen SP; Powers BD; Hendrix R; Lambert LA; Abbott DE; Vande Walle K; Grotz TE; Patel SH; Clarke CN; Staley CA; Abdel-Misih S; Cloyd JM; Lee B; Fong Y; Raoof M JAMA Netw Open; 2022 May; 5(5):e2212930. PubMed ID: 35612856 [TBL] [Abstract][Full Text] [Related]
22. Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases. Cai D; Xiao T; Zou A; Mao L; Chi B; Wang Y; Wang Q; Ji Y; Sun L Front Cardiovasc Med; 2022; 9():964894. PubMed ID: 36158815 [TBL] [Abstract][Full Text] [Related]
23. INTERPRETABLE MACHINE LEARNING FOR PREDICTING RISK OF INVASIVE FUNGAL INFECTION IN CRITICALLY ILL PATIENTS IN THE INTENSIVE CARE UNIT: A RETROSPECTIVE COHORT STUDY BASED ON MIMIC-IV DATABASE. Cao Y; Li Y; Wang M; Wang L; Fang Y; Wu Y; Liu Y; Liu Y; Hao Z; Kang H; Gao H Shock; 2024 Jun; 61(6):817-827. PubMed ID: 38407989 [TBL] [Abstract][Full Text] [Related]
24. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
25. Machine learning algorithm to predict the in-hospital mortality in critically ill patients with chronic kidney disease. Li X; Zhu Y; Zhao W; Shi R; Wang Z; Pan H; Wang D Ren Fail; 2023 Dec; 45(1):2212790. PubMed ID: 37203863 [TBL] [Abstract][Full Text] [Related]
26. Development and Validation of an Explainable Deep Learning Model to Predict In-Hospital Mortality for Patients With Acute Myocardial Infarction: Algorithm Development and Validation Study. Xie P; Wang H; Xiao J; Xu F; Liu J; Chen Z; Zhao W; Hou S; Wu D; Ma Y; Xiao J J Med Internet Res; 2024 May; 26():e49848. PubMed ID: 38728685 [TBL] [Abstract][Full Text] [Related]
27. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
28. Explainable Machine Learning Model for Predicting GI Bleed Mortality in the Intensive Care Unit. Deshmukh F; Merchant SS Am J Gastroenterol; 2020 Oct; 115(10):1657-1668. PubMed ID: 32341266 [TBL] [Abstract][Full Text] [Related]
29. Early prediction of mortality at sepsis diagnosis time in critically ill patients by using interpretable machine learning. Cheng YW; Kuo PC; Chen SH; Kuo YT; Liu TL; Chan WS; Chan KC; Yeh YC J Clin Monit Comput; 2024 Apr; 38(2):271-279. PubMed ID: 38150124 [TBL] [Abstract][Full Text] [Related]
30. Explainable machine learning model for predicting skeletal muscle loss during surgery and adjuvant chemotherapy in ovarian cancer. Hsu WH; Ko AT; Weng CS; Chang CL; Jan YT; Lin JB; Chien HJ; Lin WC; Sun FJ; Wu KP; Lee J J Cachexia Sarcopenia Muscle; 2023 Oct; 14(5):2044-2053. PubMed ID: 37435785 [TBL] [Abstract][Full Text] [Related]
31. Interpretable machine-learning model for real-time, clustered risk factor analysis of sepsis and septic death in critical care. Jiang Z; Bo L; Wang L; Xie Y; Cao J; Yao Y; Lu W; Deng X; Yang T; Bian J Comput Methods Programs Biomed; 2023 Nov; 241():107772. PubMed ID: 37657148 [TBL] [Abstract][Full Text] [Related]
32. Development and validation of an explainable machine learning model for predicting multidimensional frailty in hospitalized patients with cirrhosis. Yang F; Li C; Yang W; He Y; Wu L; Jiang K; Sun C Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39358034 [TBL] [Abstract][Full Text] [Related]
33. Explainable Artificial Intelligence for Early Prediction of Pressure Injury Risk. Alderden J; Johnny J; Brooks KR; Wilson A; Yap TL; Zhao YL; van der Laan M; Kennerly S Am J Crit Care; 2024 Sep; 33(5):373-381. PubMed ID: 39217110 [TBL] [Abstract][Full Text] [Related]
34. A machine learning-based prediction model for in-hospital mortality among critically ill patients with hip fracture: An internal and external validated study. Lei M; Han Z; Wang S; Han T; Fang S; Lin F; Huang T Injury; 2023 Feb; 54(2):636-644. PubMed ID: 36414503 [TBL] [Abstract][Full Text] [Related]
35. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
36. Explainable machine learning model to predict refeeding hypophosphatemia. Choi TY; Chang MY; Heo S; Jang JY Clin Nutr ESPEN; 2021 Oct; 45():213-219. PubMed ID: 34620320 [TBL] [Abstract][Full Text] [Related]
37. Explainable machine learning for predicting neurological outcome in hemorrhagic and ischemic stroke patients in critical care. Wei H; Huang X; Zhang Y; Jiang G; Ding R; Deng M; Wei L; Yuan H Front Neurol; 2024; 15():1385013. PubMed ID: 38915793 [TBL] [Abstract][Full Text] [Related]
38. CVD22: Explainable artificial intelligence determination of the relationship of troponin to D-Dimer, mortality, and CK-MB in COVID-19 patients. Kırboğa KK; Küçüksille EU; Naldan ME; Işık M; Gülcü O; Aksakal E Comput Methods Programs Biomed; 2023 May; 233():107492. PubMed ID: 36965300 [TBL] [Abstract][Full Text] [Related]
39. Improving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning. González-Nóvoa JA; Campanioni S; Busto L; Fariña J; Rodríguez-Andina JJ; Vila D; Íñiguez A; Veiga C Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36834150 [TBL] [Abstract][Full Text] [Related]
40. Development, validation, and feature extraction of a deep learning model predicting in-hospital mortality using Japan's largest national ICU database: a validation framework for transparent clinical Artificial Intelligence (cAI) development. Ishii E; Nawa N; Hashimoto S; Shigemitsu H; Fujiwara T Anaesth Crit Care Pain Med; 2023 Apr; 42(2):101167. PubMed ID: 36302489 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]