BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 38245002)

  • 1. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences.
    Ramazi S; Tabatabaei SAH; Khalili E; Nia AG; Motarjem K
    Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38245002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid feature extraction scheme for efficient malonylation site prediction.
    Sorkhi AG; Pirgazi J; Ghasemi V
    Sci Rep; 2022 Apr; 12(1):5756. PubMed ID: 35388017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites.
    Chen Z; He N; Huang Y; Qin WT; Liu X; Li L
    Genomics Proteomics Bioinformatics; 2018 Dec; 16(6):451-459. PubMed ID: 30639696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework.
    Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating hybrid models into lysine malonylation sites prediction on mammalian and plant proteins.
    Chung CR; Chang YP; Hsu YL; Chen S; Wu LC; Horng JT; Lee TY
    Sci Rep; 2020 Jun; 10(1):10541. PubMed ID: 32601280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Lysine Malonylation Sites Based on Pseudo Amino Acid.
    Xiang Q; Feng K; Liao B; Liu Y; Huang G
    Comb Chem High Throughput Screen; 2017; 20(7):622-628. PubMed ID: 28292251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites.
    Al-Barakati H; Thapa N; Hiroto S; Roy K; Newman RH; Kc D
    Comput Struct Biotechnol J; 2020; 18():852-860. PubMed ID: 32322367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning method to more accurately recall known lysine acetylation sites.
    Wu M; Yang Y; Wang H; Xu Y
    BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning.
    Jia X; Zhao P; Li F; Qin Z; Ren H; Li J; Miao C; Zhao Q; Akutsu T; Dou G; Chen Z; Song J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36880172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting lysine-malonylation sites of proteins using sequence and predicted structural features.
    Taherzadeh G; Yang Y; Xu H; Xue Y; Liew AW; Zhou Y
    J Comput Chem; 2018 Aug; 39(22):1757-1763. PubMed ID: 29761520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning.
    Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy.
    Wang LN; Shi SP; Xu HD; Wen PP; Qiu JD
    Bioinformatics; 2017 May; 33(10):1457-1463. PubMed ID: 28025199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Method for Identifying Malonylation Sites by Using Random Forest Algorithm.
    Wang S; Li J; Sun X; Zhang YH; Huang T; Cai Y
    Comb Chem High Throughput Screen; 2020; 23(4):304-312. PubMed ID: 30588879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepNphos: A deep-learning architecture for prediction of N-phosphorylation sites.
    Chang X; Zhu Y; Chen Y; Li L
    Comput Biol Med; 2024 Mar; 170():108079. PubMed ID: 38295472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially.
    Mujahid H; Meng X; Xing S; Peng X; Wang C; Peng Z
    J Proteomics; 2018 Jan; 170():88-98. PubMed ID: 28882676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep_KsuccSite: A novel deep learning method for the identification of lysine succinylation sites.
    Liu X; Xu LL; Lu YP; Yang T; Gu XY; Wang L; Liu Y
    Front Genet; 2022; 13():1007618. PubMed ID: 36246655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KbhbXG: A Machine learning architecture based on XGBoost for prediction of lysine β-Hydroxybutyrylation (Kbhb) modification sites.
    Chen L; Liu L; Su H; Xu Y
    Methods; 2024 Jul; 227():27-34. PubMed ID: 38679187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.