These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38245662)
1. Predicting 5-year recurrence risk in colorectal cancer: development and validation of a histology-based deep learning approach. Xiao H; Weng Z; Sun K; Shen J; Lin J; Chen S; Li B; Shi Y; Kuang M; Song X; Weng W; Peng S Br J Cancer; 2024 Apr; 130(6):951-960. PubMed ID: 38245662 [TBL] [Abstract][Full Text] [Related]
2. Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study. Jiang Y; Zhang Z; Yuan Q; Wang W; Wang H; Li T; Huang W; Xie J; Chen C; Sun Z; Yu J; Xu Y; Poultsides GA; Xing L; Zhou Z; Li G; Li R Lancet Digit Health; 2022 May; 4(5):e340-e350. PubMed ID: 35461691 [TBL] [Abstract][Full Text] [Related]
3. CT-based deep learning model for the prediction of DNA mismatch repair deficient colorectal cancer: a diagnostic study. Cao W; Hu H; Guo J; Qin Q; Lian Y; Li J; Wu Q; Chen J; Wang X; Deng Y J Transl Med; 2023 Mar; 21(1):214. PubMed ID: 36949511 [TBL] [Abstract][Full Text] [Related]
4. A computed tomography-based multitask deep learning model for predicting tumour stroma ratio and treatment outcomes in patients with colorectal cancer: a multicentre cohort study. Cui Y; Zhao K; Meng X; Mao Y; Han C; Shi Z; Yang X; Tong T; Wu L; Liu Z Int J Surg; 2024 May; 110(5):2845-2854. PubMed ID: 38348900 [TBL] [Abstract][Full Text] [Related]
5. Deep learning with whole slide images can improve the prognostic risk stratification with stage III colorectal cancer. Sun C; Li B; Wei G; Qiu W; Li D; Li X; Liu X; Wei W; Wang S; Liu Z; Tian J; Liang L Comput Methods Programs Biomed; 2022 Jun; 221():106914. PubMed ID: 35640390 [TBL] [Abstract][Full Text] [Related]
6. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer. Wang S; Liu Z; Rong Y; Zhou B; Bai Y; Wei W; Wei W; Wang M; Guo Y; Tian J Radiother Oncol; 2019 Mar; 132():171-177. PubMed ID: 30392780 [TBL] [Abstract][Full Text] [Related]
7. End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study. Jiang X; Hoffmeister M; Brenner H; Muti HS; Yuan T; Foersch S; West NP; Brobeil A; Jonnagaddala J; Hawkins N; Ward RL; Brinker TJ; Saldanha OL; Ke J; Müller W; Grabsch HI; Quirke P; Truhn D; Kather JN Lancet Digit Health; 2024 Jan; 6(1):e33-e43. PubMed ID: 38123254 [TBL] [Abstract][Full Text] [Related]
8. Lymph Node Ratio as a Risk Factor for Recurrence After Adjuvant Chemotherapy in Stage III Colorectal Cancer. Ooki A; Akagi K; Yatsuoka T; Asayama M; Hara H; Nishimura Y; Katoh H; Yamashita K; Watanabe M; Yamaguchi K J Gastrointest Surg; 2017 May; 21(5):867-878. PubMed ID: 28251467 [TBL] [Abstract][Full Text] [Related]
9. A clinical decision support system optimising adjuvant chemotherapy for colorectal cancers by integrating deep learning and pathological staging markers: a development and validation study. Kleppe A; Skrede OJ; De Raedt S; Hveem TS; Askautrud HA; Jacobsen JE; Church DN; Nesbakken A; Shepherd NA; Novelli M; Kerr R; Liestøl K; Kerr DJ; Danielsen HE Lancet Oncol; 2022 Sep; 23(9):1221-1232. PubMed ID: 35964620 [TBL] [Abstract][Full Text] [Related]
10. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. Kather JN; Krisam J; Charoentong P; Luedde T; Herpel E; Weis CA; Gaiser T; Marx A; Valous NA; Ferber D; Jansen L; Reyes-Aldasoro CC; Zörnig I; Jäger D; Brenner H; Chang-Claude J; Hoffmeister M; Halama N PLoS Med; 2019 Jan; 16(1):e1002730. PubMed ID: 30677016 [TBL] [Abstract][Full Text] [Related]
11. A retrospective analysis using deep-learning models for prediction of survival outcome and benefit of adjuvant chemotherapy in stage II/III colorectal cancer. Li X; Jonnagaddala J; Yang S; Zhang H; Xu XS J Cancer Res Clin Oncol; 2022 Aug; 148(8):1955-1963. PubMed ID: 35332389 [TBL] [Abstract][Full Text] [Related]
12. A high preoperative carbohydrate antigen 19-9 level is a risk factor for recurrence in stage II colorectal cancer. Nozawa H; Ishihara S; Kawai K; Hata K; Kiyomatsu T; Tanaka T; Nishikawa T; Otani K; Yasuda K; Sasaki K; Murono K; Watanabe T Acta Oncol; 2017 May; 56(5):634-638. PubMed ID: 27885879 [TBL] [Abstract][Full Text] [Related]
13. Computer-aided detection and prognosis of colorectal cancer on whole slide images using dual resolution deep learning. Xu Y; Jiang L; Chen W; Huang S; Liu Z; Zhang J J Cancer Res Clin Oncol; 2023 Jan; 149(1):91-101. PubMed ID: 36331654 [TBL] [Abstract][Full Text] [Related]
14. Development and Assessment of a Clinical Calculator for Estimating the Likelihood of Recurrence and Survival Among Patients With Locally Advanced Rectal Cancer Treated With Chemotherapy, Radiotherapy, and Surgery. Weiser MR; Chou JF; Keshinro A; Chapman WC; Bauer PS; Mutch MG; Parikh PJ; Cercek A; Saltz LB; Gollub MJ; Romesser PB; Crane CH; Shia J; Markowitz AJ; Garcia-Aguilar J; Gönen M; JAMA Netw Open; 2021 Nov; 4(11):e2133457. PubMed ID: 34748003 [TBL] [Abstract][Full Text] [Related]
15. A prognostic mutation panel for predicting cancer recurrence in stages II and III colorectal cancer. Sho S; Court CM; Winograd P; Russell MM; Tomlinson JS J Surg Oncol; 2017 Dec; 116(8):996-1004. PubMed ID: 28767131 [TBL] [Abstract][Full Text] [Related]
16. Long-term outcomes of endoscopic or surgical resection in T1 colorectal cancer patients: a retrospective cohort study. Song S; Dou L; Zhang Y; Liu X; Liu Y; He S; Wang G Surg Endosc; 2024 Mar; 38(3):1499-1511. PubMed ID: 38242989 [TBL] [Abstract][Full Text] [Related]
17. Colorectal obstruction is a potential prognostic factor for stage II colorectal cancer. Okuda Y; Shimura T; Yamada T; Hirata Y; Yamaguchi R; Sakamoto E; Kataoka H Int J Clin Oncol; 2018 Dec; 23(6):1101-1111. PubMed ID: 29948240 [TBL] [Abstract][Full Text] [Related]
18. Identification and Construction of Combinatory Cancer Hallmark-Based Gene Signature Sets to Predict Recurrence and Chemotherapy Benefit in Stage II Colorectal Cancer. Gao S; Tibiche C; Zou J; Zaman N; Trifiro M; O'Connor-McCourt M; Wang E JAMA Oncol; 2016 Jan; 2(1):37-45. PubMed ID: 26502222 [TBL] [Abstract][Full Text] [Related]
19. Deep learning model based on contrast-enhanced ultrasound for predicting early recurrence after thermal ablation of colorectal cancer liver metastasis. Zhao QX; He XL; Wang K; Cheng ZG; Han ZY; Liu FY; Yu XL; Hui Z; Yu J; Chao A; Liang P Eur Radiol; 2023 Mar; 33(3):1895-1905. PubMed ID: 36418624 [TBL] [Abstract][Full Text] [Related]
20. Proposal for a post-operative surveillance strategy for stage I colorectal cancer patients based on a novel recurrence risk stratification: a multicenter retrospective study. Ozawa T; Hashiguchi Y; Ishihara S; Hayama T; Tsuchiya T; Nozawa K; Yamauchi S; Sugihara K; Matsuda K Int J Colorectal Dis; 2021 Jan; 36(1):67-74. PubMed ID: 32865715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]