These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 38245666)
1. Modeling the limits of detection for antimicrobial resistance genes in agri-food samples: a comparative analysis of bioinformatics tools. Cooper AL; Low A; Wong A; Tamber S; Blais BW; Carrillo CD BMC Microbiol; 2024 Jan; 24(1):31. PubMed ID: 38245666 [TBL] [Abstract][Full Text] [Related]
2. Performance Characteristics of Next-Generation Sequencing for the Detection of Antimicrobial Resistance Determinants in Escherichia coli Genomes and Metagenomes. Rooney AM; Raphenya AR; Melano RG; Seah C; Yee NR; MacFadden DR; McArthur AG; Schneeberger PHH; Coburn B mSystems; 2022 Jun; 7(3):e0002222. PubMed ID: 35642524 [TBL] [Abstract][Full Text] [Related]
3. Metagenomic next generation sequencing for studying antibiotic resistance genes in the environment. Li B; Yan T Adv Appl Microbiol; 2023; 123():41-89. PubMed ID: 37400174 [TBL] [Abstract][Full Text] [Related]
4. Multiplexed Target Enrichment Enables Efficient and In-Depth Analysis of Antimicrobial Resistome in Metagenomes. Li Y; Shi X; Zuo Y; Li T; Liu L; Shen Z; Shen J; Zhang R; Wang S Microbiol Spectr; 2022 Dec; 10(6):e0229722. PubMed ID: 36287061 [TBL] [Abstract][Full Text] [Related]
5. Genome-centric analyses of 165 metagenomes show that mobile genetic elements are crucial for the transmission of antimicrobial resistance genes to pathogens in activated sludge and wastewater. Abdulkadir N; Saraiva JP; Zhang J; Stolte S; Gillor O; Harms H; Rocha U Microbiol Spectr; 2024 Mar; 12(3):e0291823. PubMed ID: 38289113 [TBL] [Abstract][Full Text] [Related]
6. Target-enriched long-read sequencing (TELSeq) contextualizes antimicrobial resistance genes in metagenomes. Slizovskiy IB; Oliva M; Settle JK; Zyskina LV; Prosperi M; Boucher C; Noyes NR Microbiome; 2022 Nov; 10(1):185. PubMed ID: 36324140 [TBL] [Abstract][Full Text] [Related]
7. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach. Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976 [TBL] [Abstract][Full Text] [Related]
8. Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome. Martiny H-M; Munk P; Brinch C; Aarestrup FM; Calle ML; Petersen TN Microbiol Spectr; 2024 Jul; 12(7):e0410823. PubMed ID: 38832899 [TBL] [Abstract][Full Text] [Related]
10. Antibiotic resistance gene dynamics in the commensal infant gut microbiome over the first year of life. Trosvik P; Noordzij HT; de Muinck EJ Sci Rep; 2024 Aug; 14(1):18701. PubMed ID: 39134593 [TBL] [Abstract][Full Text] [Related]
11. NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes. Arango-Argoty GA; Dai D; Pruden A; Vikesland P; Heath LS; Zhang L Microbiome; 2019 Jun; 7(1):88. PubMed ID: 31174603 [TBL] [Abstract][Full Text] [Related]
12. Metagenomic Assembly Reveals Hosts of Antibiotic Resistance Genes and the Shared Resistome in Pig, Chicken, and Human Feces. Ma L; Xia Y; Li B; Yang Y; Li LG; Tiedje JM; Zhang T Environ Sci Technol; 2016 Jan; 50(1):420-7. PubMed ID: 26650334 [TBL] [Abstract][Full Text] [Related]
13. Functional Metagenomics for Identification of Antibiotic Resistance Genes (ARGs). Di Cesare F Methods Mol Biol; 2021; 2242():173-183. PubMed ID: 33961224 [TBL] [Abstract][Full Text] [Related]
14. A curated data resource of 214K metagenomes for characterization of the global antimicrobial resistome. Martiny HM; Munk P; Brinch C; Aarestrup FM; Petersen TN PLoS Biol; 2022 Sep; 20(9):e3001792. PubMed ID: 36067158 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of sequence aligners for detecting antibiotic resistance in bacterial metagenomes. McCall C; Xagoraraki I Lett Appl Microbiol; 2018 Mar; 66(3):162-168. PubMed ID: 29288551 [TBL] [Abstract][Full Text] [Related]
17. Exploring the Bacteriome and Resistome of Humans and Food-Producing Animals in Brazil. de Carvalho FM; Valiatti TB; Santos FF; Silveira ACO; Guimarães APC; Gerber AL; Souza CO; Cassu Corsi D; Brasiliense DM; Castelo-Branco DSCM; Anzai EK; Bessa-Neto FO; Guedes GMM; de Souza GHA; Lemos LN; Ferraz LFC; Bahia MNM; Vaz MSM; da Silva RGB; Veiga R; Simionatto S; Monteiro WAP; Lima WAO; Kiffer CRV; Campos Pignatari AC; Cayô R; de Vasconcelos ATR; Gales AC Microbiol Spectr; 2022 Oct; 10(5):e0056522. PubMed ID: 35993730 [TBL] [Abstract][Full Text] [Related]
18. Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance. Zhou Y; Fu H; Yang H; Wu J; Chen Z; Jiang H; Liu M; Liu Q; Huang L; Gao J; Chen C Microbiome; 2022 Mar; 10(1):39. PubMed ID: 35246246 [TBL] [Abstract][Full Text] [Related]
19. Effects of Dairy Manure-Based Amendments and Soil Texture on Lettuce- and Radish-Associated Microbiota and Resistomes. Guron GKP; Arango-Argoty G; Zhang L; Pruden A; Ponder MA mSphere; 2019 May; 4(3):. PubMed ID: 31068435 [TBL] [Abstract][Full Text] [Related]