These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 38245841)
1. Tendon biomechanical properties are altered by storage duration but not freeze-thaw temperatures or cycles. Blaker CL; Ashton DM; Hartnell N; Little CB; Clarke EC J Orthop Res; 2024 Jun; 42(6):1180-1189. PubMed ID: 38245841 [TBL] [Abstract][Full Text] [Related]
2. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. Jung HJ; Vangipuram G; Fisher MB; Yang G; Hsu S; Bianchi J; Ronholdt C; Woo SL J Orthop Res; 2011 Aug; 29(8):1193-8. PubMed ID: 21374710 [TBL] [Abstract][Full Text] [Related]
3. Effects of gamma irradiation and repetitive freeze-thaw cycles on the biomechanical properties of human flexor digitorum superficialis tendons. Ren D; Sun K; Tian S; Yang X; Zhang C; Wang W; Huang H; Zhang J; Deng Y J Biomech; 2012 Jan; 45(2):252-6. PubMed ID: 22078178 [TBL] [Abstract][Full Text] [Related]
4. [Effects of multiple freeze-thaw on biomechanical properties of human allograft tendons]. Huang H; Shi X; Zhang X; Wang P; Tian S; Wang Q; Sun K Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Feb; 25(2):243-6. PubMed ID: 21427861 [TBL] [Abstract][Full Text] [Related]
5. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Suto K; Urabe K; Naruse K; Uchida K; Matsuura T; Mikuni-Takagaki Y; Suto M; Nemoto N; Kamiya K; Itoman M Cell Tissue Bank; 2012 Mar; 13(1):71-80. PubMed ID: 21116722 [TBL] [Abstract][Full Text] [Related]
7. The influence of cryopreservation and quick-freezing on the mechanical properties of tendons. Oswald I; Rickert M; Brüggemann GP; Niehoff A; Fonseca Ulloa CA; Jahnke A J Biomech; 2017 Nov; 64():226-230. PubMed ID: 28893393 [TBL] [Abstract][Full Text] [Related]
8. Effects of freeze-thaw on the biomechanical and structural properties of the rat Achilles tendon. Quirk NP; Lopez De Padilla C; De La Vega RE; Coenen MJ; Tovar A; Evans CH; Müller SA J Biomech; 2018 Nov; 81():52-57. PubMed ID: 30293824 [TBL] [Abstract][Full Text] [Related]
9. A biomechanical analysis of bone-patellar tendon-bone grafts after repeat freeze-thaw cycles in a cyclic loading model. Lee GH; Kumar A; Berkson E; Verma N; Bach BR; Hallab N J Knee Surg; 2009 Apr; 22(2):111-3. PubMed ID: 19476174 [TBL] [Abstract][Full Text] [Related]
10. Automated freeze-thaw cycles for decellularization of tendon tissue - a pilot study. Roth SP; Glauche SM; Plenge A; Erbe I; Heller S; Burk J BMC Biotechnol; 2017 Feb; 17(1):13. PubMed ID: 28193263 [TBL] [Abstract][Full Text] [Related]
11. Repeated freeze-thaw cycles do not alter the biomechanical properties of fibular allograft bone. Shaw JM; Hunter SA; Gayton JC; Boivin GP; Prayson MJ Clin Orthop Relat Res; 2012 Mar; 470(3):937-43. PubMed ID: 21863392 [TBL] [Abstract][Full Text] [Related]
12. Effects of Multiple Freeze-Thaw Cycles on Biochemical and Physical Quality Changes of White Shrimp (Penaeus vannamei) Treated with Lysine and Sodium Bicarbonate. Wachirasiri K; Wanlapa S; Uttapap D; Puttanlek C; Rungsardthong V J Food Sci; 2019 Jul; 84(7):1784-1790. PubMed ID: 31218686 [TBL] [Abstract][Full Text] [Related]
13. The effect of multiple freeze-thaw cycles on the viscoelastic properties and microstructure of bovine superficial digital flexor tendon. Ekiert M; Karbowniczek J; Stachewicz U; Mlyniec A J Mech Behav Biomed Mater; 2021 Aug; 120():104582. PubMed ID: 34090220 [TBL] [Abstract][Full Text] [Related]
14. The changes in the tensile properties of tendons after freeze storage in saline solution. Ng BH; Chou SM; Lim BH; Chong A Proc Inst Mech Eng H; 2005 Nov; 219(6):387-92. PubMed ID: 16312097 [TBL] [Abstract][Full Text] [Related]
15. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone. Landauer AK; Mondal S; Yuya PA; Kuxhaus L J Biomech; 2014 Nov; 47(14):3584-9. PubMed ID: 25278046 [TBL] [Abstract][Full Text] [Related]
16. Freeze-thaw induced biomechanical changes in arteries: role of collagen matrix and smooth muscle cells. Venkatasubramanian RT; Wolkers WF; Shenoi MM; Barocas VH; Lafontaine D; Soule CL; Iaizzo PA; Bischof JC Ann Biomed Eng; 2010 Mar; 38(3):694-706. PubMed ID: 20108044 [TBL] [Abstract][Full Text] [Related]
17. The influence of freezing on the tensile strength of tendon grafts : a biomechanical study. Arnout N; Myncke J; Vanlauwe J; Labey L; Lismont D; Bellemans J Acta Orthop Belg; 2013 Aug; 79(4):435-43. PubMed ID: 24205775 [TBL] [Abstract][Full Text] [Related]
18. Stability of volatile organic compound metabolites in urine at various storage temperatures and freeze-thaw cycles for 8 months. Pal VK; Kannan K Environ Pollut; 2024 Mar; 345():123493. PubMed ID: 38316251 [TBL] [Abstract][Full Text] [Related]
19. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. Szarko M; Muldrew K; Bertram JE BMC Musculoskelet Disord; 2010 Oct; 11():231. PubMed ID: 20932309 [TBL] [Abstract][Full Text] [Related]
20. Cryopreservation of tendon tissue using dimethyl sulfoxide combines conserved cell vitality with maintained biomechanical features. Hochstrat E; Müller M; Frank A; Michel P; Hansen U; Raschke MJ; Kronenberg D; Stange R PLoS One; 2019; 14(4):e0215595. PubMed ID: 31002728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]