These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38246365)
1. Estimating low concentration heavy metals in water through hyperspectral analysis and genetic algorithm-partial least squares regression. Lin Y; Gao J; Tu Y; Zhang Y; Gao J Sci Total Environ; 2024 Mar; 916():170225. PubMed ID: 38246365 [TBL] [Abstract][Full Text] [Related]
2. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area. Shen Q; Xia K; Zhang S; Kong C; Hu Q; Yang S Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117191. PubMed ID: 31247388 [TBL] [Abstract][Full Text] [Related]
3. Performance of hyperspectral data in predicting and mapping zinc concentration in soil. Sun W; Liu S; Zhang X; Zhu H Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742 [TBL] [Abstract][Full Text] [Related]
4. Inversion of soil heavy metals in metal tailings area based on different spectral transformation and modeling methods. Yang N; Han L; Liu M Heliyon; 2023 Sep; 9(9):e19782. PubMed ID: 37809479 [TBL] [Abstract][Full Text] [Related]
5. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy. Yousefi G; Homaee M; Norouzi AA Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407 [TBL] [Abstract][Full Text] [Related]
6. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Zhang S; Shen Q; Nie C; Huang Y; Wang J; Hu Q; Ding X; Zhou Y; Chen Y Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():393-400. PubMed ID: 30594866 [TBL] [Abstract][Full Text] [Related]
7. A study on water quality parameters estimation for urban rivers based on ground hyperspectral remote sensing technology. Hou Y; Zhang A; Lv R; Zhao S; Ma J; Zhang H; Li Z Environ Sci Pollut Res Int; 2022 Sep; 29(42):63640-63654. PubMed ID: 35460477 [TBL] [Abstract][Full Text] [Related]
8. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Tan K; Ma W; Wu F; Du Q Environ Monit Assess; 2019 Jun; 191(7):446. PubMed ID: 31214787 [TBL] [Abstract][Full Text] [Related]
9. Inversion of soil water and salt information based on UAV hyperspectral remote sensing and machine lear-ning. Wang YJ; Ding QD; Zhang JH; Chen R; Jia K; Li XL Ying Yong Sheng Tai Xue Bao; 2023 Nov; 34(11):3045-3052. PubMed ID: 37997416 [TBL] [Abstract][Full Text] [Related]
10. Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method. Zou Z; Wang Q; Wu Q; Li M; Zhen J; Yuan D; Zhou M; Xu C; Wang Y; Zhao Y; Yin S; Xu L J Environ Manage; 2024 Mar; 355():120503. PubMed ID: 38457894 [TBL] [Abstract][Full Text] [Related]
11. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands. Zhao MS; Wang T; Lu Y; Wang S; Wu Y PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071 [TBL] [Abstract][Full Text] [Related]
12. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China. Zhang B; Guo B; Zou B; Wei W; Lei Y; Li T Environ Pollut; 2022 May; 300():118981. PubMed ID: 35150799 [TBL] [Abstract][Full Text] [Related]
13. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas. Hou L; Li X; Li F J Environ Qual; 2019 Jan; 48(1):57-63. PubMed ID: 30640357 [TBL] [Abstract][Full Text] [Related]
14. Inversion of heavy metal copper content in soil-wheat systems using hyperspectral techniques and enrichment characteristics. Zhong L; Yang S; Chu X; Sun Z; Li J Sci Total Environ; 2024 Jan; 907():168104. PubMed ID: 37884148 [TBL] [Abstract][Full Text] [Related]
15. Soil copper concentration map in mining area generated from AHSI remote sensing imagery. Sun W; Liu S; Wang M; Zhang X; Shang K; Liu Q Sci Total Environ; 2023 Feb; 860():160511. PubMed ID: 36442635 [TBL] [Abstract][Full Text] [Related]
16. Estimation of the rice aboveground biomass based on the first derivative spectrum and Boruta algorithm. Nian Y; Su X; Yue H; Zhu Y; Li J; Wang W; Sheng Y; Ma Q; Liu J; Li X Front Plant Sci; 2024; 15():1396183. PubMed ID: 38726299 [TBL] [Abstract][Full Text] [Related]
17. Retrieval of Leaf Chlorophyll Contents (LCCs) in Litchi Based on Fractional Order Derivatives and VCPA-GA-ML Algorithms. Hasan U; Jia K; Wang L; Wang C; Shen Z; Yu W; Sun Y; Jiang H; Zhang Z; Guo J; Wang J; Li D Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771586 [TBL] [Abstract][Full Text] [Related]
18. [Estimating heavy metal concentrations in topsoil from vegetation reflectance spectra of Hyperion images: A case study of Yushu County, Qinghai, China.]. Yang LY; Gao XH; Zhang W; Shi FF; He LH; Jia W Ying Yong Sheng Tai Xue Bao; 2016 Jun; 27(6):1775-1784. PubMed ID: 29737683 [TBL] [Abstract][Full Text] [Related]
19. Monitoring of Nitrogen Concentration in Soybean Leaves at Multiple Spatial Vertical Scales Based on Spectral Parameters. Sun T; Li Z; Wang Z; Liu Y; Zhu Z; Zhao Y; Xie W; Cui S; Chen G; Yang W; Zhang Z; Zhang F Plants (Basel); 2024 Jan; 13(1):. PubMed ID: 38202447 [TBL] [Abstract][Full Text] [Related]
20. Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data. Wang Y; Zhang X; Sun W; Wang J; Ding S; Liu S Sci Total Environ; 2022 Sep; 838(Pt 2):156129. PubMed ID: 35605855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]