These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38246412)
1. Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis. Suzuki T; Yoshimura M; Arai M; Narikawa R J Mol Biol; 2024 Mar; 436(5):168451. PubMed ID: 38246412 [TBL] [Abstract][Full Text] [Related]
2. Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor. Suzuki T; Yoshimura M; Hoshino H; Fushimi K; Arai M; Narikawa R FEBS J; 2023 Oct; 290(20):4999-5015. PubMed ID: 37488966 [TBL] [Abstract][Full Text] [Related]
3. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process. Takeda Y; Ohtsu I; Suzuki T; Nakasone Y; Fushimi K; Ikeuchi M; Terazima M; Dohra H; Narikawa R Arch Biochem Biophys; 2023 Sep; 745():109715. PubMed ID: 37549803 [TBL] [Abstract][Full Text] [Related]
4. Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion. Kuwasaki Y; Miyake K; Fushimi K; Takeda Y; Ueda Y; Nakajima T; Ikeuchi M; Sato M; Narikawa R Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208089 [TBL] [Abstract][Full Text] [Related]
5. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion. Hoshino H; Narikawa R Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209 [TBL] [Abstract][Full Text] [Related]
6. An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. Tachibana SR; Tang L; Zhu L; Takeda Y; Fushimi K; Ueda Y; Nakajima T; Kuwasaki Y; Sato M; Narikawa R; Fang C Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065754 [TBL] [Abstract][Full Text] [Related]
7. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
9. Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis. Fushimi K; Enomoto G; Ikeuchi M; Narikawa R Photochem Photobiol; 2017 May; 93(3):681-691. PubMed ID: 28500699 [TBL] [Abstract][Full Text] [Related]
10. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle. Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277 [TBL] [Abstract][Full Text] [Related]
11. Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. Fushimi K; Narikawa R Adv Exp Med Biol; 2021; 1293():167-187. PubMed ID: 33398813 [TBL] [Abstract][Full Text] [Related]
12. Conserved phenylalanine residues are required for blue-shifting of cyanobacteriochrome photoproducts. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2014 May; 53(19):3118-30. PubMed ID: 24766217 [TBL] [Abstract][Full Text] [Related]
13. Point (S-to-G) Mutations in the W(S/G)GE Motif in Red/Green Cyanobacteriochrome GAF Domains Enhance Thermal Reversion Rates. Jang J; Reed PMM; Rauscher S; Woolley GA Biochemistry; 2022 Jul; 61(14):1444-1455. PubMed ID: 35759789 [TBL] [Abstract][Full Text] [Related]
14. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. Song C; Narikawa R; Ikeuchi M; Gärtner W; Matysik J J Phys Chem B; 2015 Jul; 119(30):9688-95. PubMed ID: 26115331 [TBL] [Abstract][Full Text] [Related]
15. Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected]. Lim S; Rockwell NC; Martin SS; Dallas JL; Lagarias JC; Ames JB Photochem Photobiol Sci; 2014 Jun; 13(6):951-62. PubMed ID: 24745038 [TBL] [Abstract][Full Text] [Related]
16. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696 [TBL] [Abstract][Full Text] [Related]
18. The Cruciality of Single Amino Acid Replacement for the Spectral Tuning of Biliverdin-Binding Cyanobacteriochromes. Fushimi K; Hoshino H; Shinozaki-Narikawa N; Kuwasaki Y; Miyake K; Nakajima T; Sato M; Kano F; Narikawa R Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872628 [TBL] [Abstract][Full Text] [Related]
19. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Narikawa R; Nakajima T; Aono Y; Fushimi K; Enomoto G; Ni-Ni-Win ; Itoh S; Sato M; Ikeuchi M Sci Rep; 2015 Jan; 5():7950. PubMed ID: 25609645 [TBL] [Abstract][Full Text] [Related]
20. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors. Rockwell NC; Lagarias JC J Mol Biol; 2024 Mar; 436(5):168313. PubMed ID: 37839679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]