BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38246798)

  • 1. sRNAminer: A multifunctional toolkit for next-generation sequencing small RNA data mining in plants.
    Li G; Chen C; Chen P; Meyers BC; Xia R
    Sci Bull (Beijing); 2024 Mar; 69(6):784-791. PubMed ID: 38246798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPORTS1.0: A Tool for Annotating and Profiling Non-coding RNAs Optimized for rRNA- and tRNA-derived Small RNAs.
    Shi J; Ko EA; Sanders KM; Chen Q; Zhou T
    Genomics Proteomics Bioinformatics; 2018 Apr; 16(2):144-151. PubMed ID: 29730207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sRNAanno-a database repository of uniformly annotated small RNAs in plants.
    Chen C; Li J; Feng J; Liu B; Feng L; Yu X; Li G; Zhai J; Meyers BC; Xia R
    Hortic Res; 2021 Mar; 8(1):45. PubMed ID: 33642576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The UEA sRNA Workbench (version 4.4): a comprehensive suite of tools for analyzing miRNAs and sRNAs.
    Stocks MB; Mohorianu I; Beckers M; Paicu C; Moxon S; Thody J; Dalmay T; Moulton V
    Bioinformatics; 2018 Oct; 34(19):3382-3384. PubMed ID: 29722807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BrumiR: A toolkit for de novo discovery of microRNAs from sRNA-seq data.
    Moraga C; Sanchez E; Ferrarini MG; Gutierrez RA; Vidal EA; Sagot MF
    Gigascience; 2022 Oct; 11():. PubMed ID: 36283679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. sRIS: A Small RNA Illustration System for Plant Next-Generation Sequencing Data Analysis.
    Tseng KC; Chiang-Hsieh YF; Pai H; Wu NY; Zheng HQ; Chow CN; Lee TY; Chang SB; Lin NS; Chang WC
    Plant Cell Physiol; 2020 Jun; 61(6):1204-1212. PubMed ID: 32181856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification of Sclerotinia sclerotiorum small RNAs and their endogenous targets.
    Regmi R; Newman TE; Khentry Y; Kamphuis LG; Derbyshire MC
    BMC Genomics; 2023 Oct; 24(1):582. PubMed ID: 37784009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive processing of high-throughput small RNA sequencing data including quality checking, normalization, and differential expression analysis using the UEA sRNA Workbench.
    Beckers M; Mohorianu I; Stocks M; Applegate C; Dalmay T; Moulton V
    RNA; 2017 Jun; 23(6):823-835. PubMed ID: 28289155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational tools for plant small RNA detection and categorization.
    Morgado L; Johannes F
    Brief Bioinform; 2019 Jul; 20(4):1181-1192. PubMed ID: 29059285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants.
    Lunardon A; Johnson NR; Hagerott E; Phifer T; Polydore S; Coruh C; Axtell MJ
    Genome Res; 2020 Mar; 30(3):497-513. PubMed ID: 32179590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets.
    Stocks MB; Moxon S; Mapleson D; Woolfenden HC; Mohorianu I; Folkes L; Schwach F; Dalmay T; Moulton V
    Bioinformatics; 2012 Aug; 28(15):2059-61. PubMed ID: 22628521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya.
    Aryal R; Yang X; Yu Q; Sunkar R; Li L; Ming R
    BMC Genomics; 2012 Dec; 13():682. PubMed ID: 23216749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Placement of Multi-mapping Small RNAs.
    Johnson NR; Yeoh JM; Coruh C; Axtell MJ
    G3 (Bethesda); 2016 Jul; 6(7):2103-11. PubMed ID: 27175019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The UEA Small RNA Workbench: A Suite of Computational Tools for Small RNA Analysis.
    Mohorianu I; Stocks MB; Applegate CS; Folkes L; Moulton V
    Methods Mol Biol; 2017; 1580():193-224. PubMed ID: 28439835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bioinformatics Pipeline to Accurately and Efficiently Analyze the MicroRNA Transcriptomes in Plants.
    Wang Y; Kuang Z; Li L; Yang X
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification and comprehensive analysis of microRNAs and phased small interfering RNAs in watermelon.
    Liu L; Ren S; Guo J; Wang Q; Zhang X; Liao P; Li S; Sunkar R; Zheng Y
    BMC Genomics; 2018 May; 19(Suppl 2):111. PubMed ID: 29764387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phased secondary small interfering RNAs in Panaxnotoginseng.
    Chen K; Liu L; Zhang X; Yuan Y; Ren S; Guo J; Wang Q; Liao P; Li S; Cui X; Li YF; Zheng Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):41. PubMed ID: 29363419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methodologies for Discovery and Quantitative Profiling of sRNAs in Potato.
    Križnik M; Zagorščak M; Gruden K
    Methods Mol Biol; 2021; 2354():221-260. PubMed ID: 34448163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamically expressed small RNAs, substantially driven by genomic structural variants, contribute to transcriptomic changes during tomato domestication.
    Qing Y; Zheng Y; Mlotshwa S; Smith HN; Wang X; Zhai X; van der Knaap E; Wang Y; Fei Z
    Plant J; 2022 Jun; 110(6):1536-1550. PubMed ID: 35514123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.