These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38246873)

  • 1. Unraveling the Impact of Curvature on Electrocatalytic Performance of Carbon Materials: A State-of-the-Art Review.
    Wen H; Zhao Z; Luo Z; Wang C
    ChemSusChem; 2024 May; 17(10):e202301859. PubMed ID: 38246873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.
    Wu Q; Yang L; Wang X; Hu Z
    Acc Chem Res; 2017 Feb; 50(2):435-444. PubMed ID: 28145692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling effects of Zn single atom and high curvature supports for improved performance of CO
    Hao Z; Chen J; Zhang D; Zheng L; Li Y; Yin Z; He G; Jiao L; Wen Z; Lv XJ
    Sci Bull (Beijing); 2021 Aug; 66(16):1649-1658. PubMed ID: 36654299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting.
    Wang X; Vasileff A; Jiao Y; Zheng Y; Qiao SZ
    Adv Mater; 2019 Mar; 31(13):e1803625. PubMed ID: 30276904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Curved Defect Sites: How Curvature Effect Influences Metal-Free Defective Carbon Electrocatalysts.
    Wang X; Han C; Han Y; Huang R; Sun H; Guo P; Liu X; Huang M; Chen Y; Wu H; Zhang J; Yan X; Mao Z; Du A; Jia Y; Wang L
    Small; 2024 Sep; 20(36):e2401447. PubMed ID: 38693087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to environmental pollution management/remediation techniques using derived advanced materials.
    Singh R; Samuel MS; Ravikumar M; Ethiraj S; Kirankumar VS; Kumar M; Arulvel R; Suresh S
    Chemosphere; 2023 Dec; 344():140311. PubMed ID: 37769916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis.
    Chen P; Tong Y; Wu C; Xie Y
    Acc Chem Res; 2018 Nov; 51(11):2857-2866. PubMed ID: 30375850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT-assisted low-dimensional carbon-based electrocatalysts design and mechanism study: a review.
    Han Y; Xu H; Li Q; Du A; Yan X
    Front Chem; 2023; 11():1286257. PubMed ID: 37920412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure-Performance Relationship Discovery.
    Li F; Han GF; Baek JB
    Acc Chem Res; 2022 Jan; 55(1):110-120. PubMed ID: 34937339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. γ-Graphyne nanotubes as defect-free catalysts of the oxygen reduction reaction: a DFT investigation.
    Yuan Y; Wu S; Ai H; Lee JY; Kang B
    Phys Chem Chem Phys; 2020 Apr; 22(16):8633-8638. PubMed ID: 32267268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Insights on ORR Activity of Sn-N-C Single-Atom Catalysts.
    Zhang Y; Li B; Su Y
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: recent strategies for design, synthesis and performance optimization.
    Qin Y; Ou Z; Xu C; Zhang Z; Yi J; Jiang Y; Wu J; Guo C; Si Y; Zhao T
    Nanoscale Res Lett; 2021 May; 16(1):92. PubMed ID: 34032941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curvature effects on the bifunctional oxygen catalytic performance of single atom metal-N-C.
    Zhou X; Jin Z; Zhang J; Hu K; Liu S; Qiu HJ; Lin X
    Nanoscale; 2023 Feb; 15(5):2276-2284. PubMed ID: 36633321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curvature Effect of Pyridinic N-Modified Carbon Atom Sites for Electrocatalyzing CO
    Zhao Y; Yuan Q; Sun K; Wang A; Xu R; Xu J; Wang Y; Fan M; Jiang J
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37593-37601. PubMed ID: 37494594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO
    Xue D; Xia H; Yan W; Zhang J; Mu S
    Nanomicro Lett; 2020 Oct; 13(1):5. PubMed ID: 34138192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergy of Substrate Chemical Environments and Single-Atom Catalysts Promotes Catalytic Performance: Nitrogen Reduction on Chiral and Defected Carbon Nanotubes.
    Yuan S; Meng G; Liu D; Zhao W; Zhu H; Chi Y; Ren H; Guo W
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52544-52552. PubMed ID: 36367754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curvature effects regulate the catalytic activity of Co@N
    Ma N; Zhang Y; Wang Y; Zhao J; Liang B; Xiong Y; Luo S; Huang C; Fan J
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):1458-1468. PubMed ID: 37924660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.