BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38247050)

  • 1. Unsupervised deep learning with convolutional neural networks for static parallel transmit design: A retrospective study.
    Kilic T; Liebig P; Demirel OB; Herrler J; Nagel AM; Ugurbil K; Akçakaya M
    Magn Reson Med; 2024 Jun; 91(6):2498-2507. PubMed ID: 38247050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigid motion-resolved
    Plumley A; Watkins L; Treder M; Liebig P; Murphy K; Kopanoglu E
    Magn Reson Med; 2022 May; 87(5):2254-2270. PubMed ID: 34958134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of universal parallel-transmit refocusing k
    Gras V; Mauconduit F; Vignaud A; Amadon A; Le Bihan D; Stöcker T; Boulant N
    Magn Reson Med; 2018 Jul; 80(1):53-65. PubMed ID: 29193250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid estimation of 2D relative
    Krueger F; Aigner CS; Hammernik K; Dietrich S; Lutz M; Schulz-Menger J; Schaeffter T; Schmitter S
    Magn Reson Med; 2023 Mar; 89(3):1002-1015. PubMed ID: 36336877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined 32-channel receive-loops/8-channel transmit-dipoles coil array for whole-brain MR imaging at 7T.
    Clément J; Gruetter R; Ipek Ö
    Magn Reson Med; 2019 Sep; 82(3):1229-1241. PubMed ID: 31081176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigating transmit B 1 inhomogeneity in the liver at 7T using multi-spoke parallel transmit RF pulse design.
    Wu X; Schmitter S; Auerbach EJ; Uğurbil K; Van de Moortele PF
    Quant Imaging Med Surg; 2014 Feb; 4(1):4-10. PubMed ID: 24649429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control.
    Yetisir F; Poser BA; Grant PE; Adalsteinsson E; Wald LL; Guerin B
    Magn Reson Imaging; 2022 Nov; 93():87-96. PubMed ID: 35940379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning-based motion artifact removal networks for quantitative
    Xu X; Kothapalli SVVN; Liu J; Kahali S; Gan W; Yablonskiy DA; Kamilov US
    Magn Reson Med; 2022 Jul; 88(1):106-119. PubMed ID: 35257400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing parallel transmit head coil arrays based on radiofrequency pulse performance.
    Cao Z; Yan X; Gore JC; Grissom WA
    Magn Reson Med; 2020 Jun; 83(6):2331-2342. PubMed ID: 31722120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of tight-fitting 7T parallel-transmit head array designs using excitation uniformity and local specific absorption rate metrics.
    Kazemivalipour E; Wald LL; Guerin B
    Magn Reson Med; 2024 Mar; 91(3):1209-1224. PubMed ID: 37927216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 7T ultra-high field body MR imaging with an 8-channel transmit/32-channel receive radiofrequency coil array.
    Rietsch SHG; Orzada S; Maderwald S; Brunheim S; Philips BWJ; Scheenen TWJ; Ladd ME; Quick HH
    Med Phys; 2018 Jul; 45(7):2978-2990. PubMed ID: 29679498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based local SAR prediction using B
    Gokyar S; Zhao C; Ma SJ; Wang DJJ
    Magn Reson Med; 2023 Dec; 90(6):2524-2538. PubMed ID: 37466040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation.
    Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-task and multi-channel convolutional neural network for semi-supervised neonatal artefact detection.
    Hermans T; Smets L; Lemmens K; Dereymaeker A; Jansen K; Naulaers G; Zappasodi F; Van Huffel S; Comani S; De Vos M
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36791462
    [No Abstract]   [Full Text] [Related]  

  • 18. Mitigating transmit-B
    Ma X; Uğurbil K; Wu X
    Magn Reson Med; 2022 Aug; 88(2):727-741. PubMed ID: 35403237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
    Yaman B; Hosseini SAH; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    Magn Reson Med; 2020 Dec; 84(6):3172-3191. PubMed ID: 32614100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. B1+ inhomogeneity mitigation in CEST using parallel transmission.
    Tse DHY; da Silva NA; Poser BA; Shah NJ
    Magn Reson Med; 2017 Dec; 78(6):2216-2225. PubMed ID: 28244138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.