These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38247206)

  • 1. Triple Synergism Effect of Ammonium Nitrilotriacetate on the Chemical Mechanical Polishing Performance of Ruthenium Barrier Layers.
    He Z; Zhou J; Qi Y; Luo C; Wang C; Liu J
    Small; 2024 Jun; 20(26):e2309965. PubMed ID: 38247206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ethylenediamine on CMP performance of ruthenium in H
    Xu Y; Ma T; Liu Y; Tan B; Zhang S; Wang Y; Song G
    RSC Adv; 2021 Dec; 12(1):228-240. PubMed ID: 35424475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer Nanoparticles Applied in the CMP (Chemical Mechanical Polishing) Process of Chip Wafers for Defect Improvement and Polishing Removal Rate Response.
    Chiu WL; Huang CI
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of under-layer treatment of Ta/TaN barrier film on corrosion between Cu seed and Ta in chemical-mechanical-polishing slurry.
    Lee WH; Hung CC; Wang YS; Chang SC; Wang YL
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4196-203. PubMed ID: 21128400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Friction and Temperature in the Chemical-Mechanical Planarization Process.
    Ilie F; Minea IL; Cotici CD; Hristache AF
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polishing Performance and Removal Mechanism of Core-Shell Structured Diamond/SiO
    Zhao G; Xu Y; Wang Q; Liu J; Zhan Y; Chen B
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into Polishing Slurry and Material Removal Mechanism of Photoassisted Chemical Mechanical Polishing of YAG Crystals.
    Zhang X; Guo X; Wang H; Kang R; Gao S
    Langmuir; 2023 Sep; 39(38):13668-13677. PubMed ID: 37699563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel atomic removal model for chemical mechanical polishing using developed mesoporous shell/core abrasives based on molecular dynamics.
    Liu Z; Zhang Z; Feng J; Yi X; Shi C; Gu Y; Zhao F; Liu S; Li J
    Nanoscale; 2023 Dec; 16(1):85-96. PubMed ID: 38050711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic surface of quartz glass induced by photocatalytic green chemical mechanical polishing using the developed SiO
    Fan Y; Zhang Z; Yu J; Deng X; Shi C; Zhou H; Meng F; Feng J
    Nanoscale Adv; 2024 Feb; 6(5):1380-1391. PubMed ID: 38419872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Ceria Nanoparticles as Abrasives Applied with Defoaming Polymers for CMP (Chemical Mechanical Polishing) Applications.
    Hwang S; Kim W
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Fe-doped colloidal SiO(2) abrasives and their chemical mechanical polishing behavior on sapphire substrates.
    Lei H; Gu Q; Chen R; Wang Z
    Appl Opt; 2015 Aug; 54(24):7188-94. PubMed ID: 26368752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-level flatness on oxygen-free copper surface in lapping and chemical mechanical polishing.
    Liu D; Zhang Z; Feng J; Yu Z; Meng F; Xu G; Wang J; Wen W; Liu W
    Nanoscale Adv; 2022 Oct; 4(20):4263-4271. PubMed ID: 36321157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of Precursors on the Morphology and Chemical Mechanical Polishing Performance of Ceria-Based Abrasives.
    Zheng Y; Wang N; Feng Z; Tan X; Zhang Z; Han H; Huang X
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scavenger with Protonated Phosphite Ions for Incredible Nanoscale ZrO
    Kim SI; Jeong GP; Lee SJ; Lee JC; Lee JM; Park JH; Bae JY; Park JG
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribochemical mechanisms of abrasives for SiC and sapphire substrates in nanoscale polishing.
    Luo Q; Lu J; Jiang F; Lin J; Tian Z
    Nanoscale; 2023 Oct; 15(38):15675-15685. PubMed ID: 37724457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Evaluation of Potential Molecular Catalysts for Nitrous Oxide Decomposition.
    Nicholas KM; Lander C; Shao Y
    Inorg Chem; 2022 Sep; 61(37):14591-14605. PubMed ID: 36067530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Synthesis of Triangular Submicron-Sized CeO
    Wang X; Wang N; Zhang Z; Tan X; Zheng Y; Yang J
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism Exploration of the Effect of Polyamines on the Polishing Rate of Silicon Chemical Mechanical Polishing: A Study Combining Simulations and Experiments.
    Lin Z; Zhu J; Huang Q; Zhu L; Li W; Yu W
    Nanomaterials (Basel); 2024 Jan; 14(1):. PubMed ID: 38202582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances In Silicon Carbide Chemical Mechanical Polishing Technologies.
    Hsieh CH; Chang CY; Hsiao YK; Chen CA; Tu CC; Kuo HC
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green chemical mechanical polishing of sapphire wafers using a novel slurry.
    Xie W; Zhang Z; Liao L; Liu J; Su H; Wang S; Guo D
    Nanoscale; 2020 Nov; 12(44):22518-22526. PubMed ID: 32996521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.