These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38247330)

  • 1. Computational fragment-based drug design of potential Glo-I inhibitors.
    Bibars RS; Al-Balas QA
    J Enzyme Inhib Med Chem; 2024 Dec; 39(1):2301758. PubMed ID: 38247330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel glyoxalase-I inhibitors possessing a "zinc-binding feature" as potential anticancer agents.
    Al-Balas QA; Hassan MA; Al-Shar'i NA; Mhaidat NM; Almaaytah AM; Al-Mahasneh FM; Isawi IH
    Drug Des Devel Ther; 2016; 10():2623-9. PubMed ID: 27574401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling Potential Glyoxalase-I Inhibitors Utilizing Structure-Based Drug Design Techniques.
    Fetian MH; Al-Balas QA
    Adv Appl Bioinform Chem; 2024; 17():21-32. PubMed ID: 38343400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking.
    Al-Shar'i NA; Al-Balas QA; Al-Waqfi RA; Hassan MA; Alkhalifa AE; Ayoub NM
    J Comput Aided Mol Des; 2019 Sep; 33(9):799-815. PubMed ID: 31630312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of potential flavonoid inhibitors of glyoxalase-I based on virtual screening and in vitro studies.
    Yadav A; Kumar R; Sunkaria A; Singhal N; Kumar M; Sandhir R
    J Biomol Struct Dyn; 2016 May; 34(5):993-1007. PubMed ID: 26108947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of pharmacophore modeling and 3D-QSAR analysis of potential glyoxalase-I inhibitors as anticancer agents.
    Al-Sha'er MA; Al-Balas QA; Hassan MA; Al Jabal GA; Almaaytah AM
    Comput Biol Chem; 2019 Jun; 80():102-110. PubMed ID: 30947068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHK1 kinase inhibition: identification of allosteric hits using MD simulations, pharmacophore modeling, docking and MM-PBSA calculations.
    Al-Shar'i N; Musleh SS
    Mol Divers; 2022 Apr; 26(2):903-921. PubMed ID: 33686514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino-carboxamide benzothiazoles as potential LSD1 hit inhibitors. Part I: Computational fragment-based drug design.
    Alnabulsi S; Al-Hurani EA; Al-Shar'i NA; El-Elimat T
    J Mol Graph Model; 2019 Dec; 93():107440. PubMed ID: 31494535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of the first structure-based pharmacophore model containing a selective "zinc binding group" feature to identify potential glyoxalase-1 inhibitors.
    Al-Balas Q; Hassan M; Al-Oudat B; Alzoubi H; Mhaidat N; Almaaytah A
    Molecules; 2012 Nov; 17(12):13740-58. PubMed ID: 23174893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis and biological evaluation of novel glyoxalase I inhibitors possessing diazenylbenzenesulfonamide moiety as potential anticancer agents.
    Al-Oudat BA; Jaradat HM; Al-Balas QA; Al-Shar'i NA; Bryant-Friedrich A; Bedi MF
    Bioorg Med Chem; 2020 Aug; 28(16):115608. PubMed ID: 32690268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piceatannol, a natural trans-stilbene compound, inhibits human glyoxalase I.
    Takasawa R; Akahane H; Tanaka H; Shimada N; Yamamoto T; Uchida-Maruki H; Sai M; Yoshimori A; Tanuma SI
    Bioorg Med Chem Lett; 2017 Mar; 27(5):1169-1174. PubMed ID: 28169168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-objective molecular de novo design by adaptive fragment prioritization.
    Reutlinger M; Rodrigues T; Schneider P; Schneider G
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4244-8. PubMed ID: 24623390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment informatics and computational fragment-based drug design: an overview and update.
    Sheng C; Zhang W
    Med Res Rev; 2013 May; 33(3):554-98. PubMed ID: 22430881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications.
    Bian Y; Xie XS
    AAPS J; 2018 Apr; 20(3):59. PubMed ID: 29633051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational approaches to structure-based ligand design.
    Joseph-McCarthy D
    Pharmacol Ther; 1999 Nov; 84(2):179-91. PubMed ID: 10596905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment virtual screening based on Bayesian categorization for discovering novel VEGFR-2 scaffolds.
    Zhang Y; Jiao Y; Xiong X; Liu H; Ran T; Xu J; Lu S; Xu A; Pan J; Qiao X; Shi Z; Lu T; Chen Y
    Mol Divers; 2015 Nov; 19(4):895-913. PubMed ID: 26022686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of B. anthracis N(5)-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening.
    Lei H; Jones C; Zhu T; Patel K; Wolf NM; Fung LW; Lee H; Johnson ME
    Bioorg Med Chem; 2016 Feb; 24(4):596-605. PubMed ID: 26740153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ellagic acid: A potent glyoxalase-I inhibitor with a unique scaffold.
    Al-Shar'i NA; Al-Balas QA; Hassan MA; El-Elimat TM; Aljabal GA; Almaaytah AM
    Acta Pharm; 2021 Mar; 71(1):115-130. PubMed ID: 32697740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-based de novo design for type II kinase inhibitors and its extented application to acetylcholinesterase inhibitors.
    Su BH; Huang YS; Chang CY; Tu YS; Tseng YJ
    Molecules; 2013 Oct; 18(11):13487-509. PubMed ID: 24184819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.