BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38247345)

  • 1. A Self-Sustaining Near-Infrared Afterglow Chemiluminophore for High-Contrast Activatable Imaging.
    Zhu J; Chen W; Yang L; Zhang Y; Cheng B; Gu W; Li Q; Miao Q
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318545. PubMed ID: 38247345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging.
    Yang L; Zhao M; Chen W; Zhu J; Xu W; Li Q; Pu K; Miao Q
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313117. PubMed ID: 38018329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Infrared Afterglow Luminescence of Chlorin Nanoparticles for Ultrasensitive
    Chen W; Zhang Y; Li Q; Jiang Y; Zhou H; Liu Y; Miao Q; Gao M
    J Am Chem Soc; 2022 Apr; 144(15):6719-6726. PubMed ID: 35380810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Four-In-One" Design of a Hemicyanine-Based Modular Scaffold for High-Contrast Activatable Molecular Afterglow Imaging.
    Liu Y; Teng L; Lou XF; Zhang XB; Song G
    J Am Chem Soc; 2023 Mar; 145(9):5134-5144. PubMed ID: 36823697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery.
    Ni X; Zhang X; Duan X; Zheng HL; Xue XS; Ding D
    Nano Lett; 2019 Jan; 19(1):318-330. PubMed ID: 30556699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging.
    Liu Y; Teng L; Lyu Y; Song G; Zhang XB; Tan W
    Nat Commun; 2022 Apr; 13(1):2216. PubMed ID: 35468901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for in vivo Recharged Luminescent Imaging.
    Zhou J; Huang K; Lin S; Zhang N; Wang X; Li Y; Li Z; Han G
    Chemistry; 2022 May; 28(26):e202104366. PubMed ID: 35218098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging.
    Jiang Y; Zhao M; Miao J; Chen W; Zhang Y; Miao M; Yang L; Li Q; Miao Q
    Nat Commun; 2024 Mar; 15(1):2124. PubMed ID: 38459025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents.
    Dang Q; Jiang Y; Wang J; Wang J; Zhang Q; Zhang M; Luo S; Xie Y; Pu K; Li Q; Li Z
    Adv Mater; 2020 Dec; 32(52):e2006752. PubMed ID: 33175432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near-Infrared Afterglow Imaging of Metastatic Tumors.
    Xie C; Zhen X; Miao Q; Lyu Y; Pu K
    Adv Mater; 2018 May; 30(21):e1801331. PubMed ID: 29611257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles.
    Miao Q; Xie C; Zhen X; Lyu Y; Duan H; Liu X; Jokerst JV; Pu K
    Nat Biotechnol; 2017 Nov; 35(11):1102-1110. PubMed ID: 29035373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Infrared Afterglow ONOO
    Zhang L; Wang YC; Liao Y; Zhang Q; Liu X; Zhu D; Feng H; Bryce MR; Ren L
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45574-45584. PubMed ID: 37729542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Organic Afterglow Protheranostic Nanoassembly.
    He S; Xie C; Jiang Y; Pu K
    Adv Mater; 2019 Aug; 31(32):e1902672. PubMed ID: 31206855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging.
    Huang J; Pu K
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11717-11731. PubMed ID: 32134156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H
    Wu L; Ishigaki Y; Hu Y; Sugimoto K; Zeng W; Harimoto T; Sun Y; He J; Suzuki T; Jiang X; Chen HY; Ye D
    Nat Commun; 2020 Jan; 11(1):446. PubMed ID: 31974383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large Hollow Cavity Luminous Nanoparticles with Near-Infrared Persistent Luminescence and Tunable Sizes for Tumor Afterglow Imaging and Chemo-/Photodynamic Therapies.
    Wang J; Li J; Yu J; Zhang H; Zhang B
    ACS Nano; 2018 May; 12(5):4246-4258. PubMed ID: 29676899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunction-Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo.
    Anjong TF; Choi H; Yoo J; Bak Y; Cho Y; Kim D; Lee S; Lee K; Kim BG; Kim S
    Small; 2022 Jun; 18(22):e2200245. PubMed ID: 35315219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconducting Photosensitizer-Incorporated Copolymers as Near-Infrared Afterglow Nanoagents for Tumor Imaging.
    Cui D; Xie C; Li J; Lyu Y; Pu K
    Adv Healthc Mater; 2018 Sep; 7(18):e1800329. PubMed ID: 30080302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic Nanoparticles with Persistent Luminescence for In Vivo Afterglow Imaging-Guided Photodynamic Therapy.
    Zheng X; Wu W; Zheng Y; Ding Y; Xiang Y; Liu B; Tong A
    Chemistry; 2021 Apr; 27(23):6911-6916. PubMed ID: 33556210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activatable Multifunctional Persistent Luminescence Nanoparticle/Copper Sulfide Nanoprobe for in Vivo Luminescence Imaging-Guided Photothermal Therapy.
    Chen LJ; Sun SK; Wang Y; Yang CX; Wu SQ; Yan XP
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32667-32674. PubMed ID: 27934189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.