These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38247345)

  • 21. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment.
    Wang X; Pu K
    Chem Soc Rev; 2023 Jul; 52(14):4549-4566. PubMed ID: 37350132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multimodal Biophotonics of Semiconducting Polymer Nanoparticles.
    Jiang Y; Pu K
    Acc Chem Res; 2018 Aug; 51(8):1840-1849. PubMed ID: 30074381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leveraging Long-Distance Singlet-Oxygen Transfer for Bienzyme-Locked Afterglow Imaging of Intratumoral Granule Enzymes.
    Wei X; Xu C; Cheng P; Hu Y; Liu J; Xu M; Huang J; Zhang Y; Pu K
    J Am Chem Soc; 2024 Jun; 146(25):17393-17403. PubMed ID: 38860693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-Infrared Persistent Luminescence Nanoprobe for Ultrasensitive Image-Guided Tumor Resection.
    Lin P; Shi J; Lin Y; Zhang Q; Yu K; Liu L; Song L; Kang Y; Hong M; Zhang Y
    Adv Sci (Weinh); 2023 Jun; 10(18):e2207486. PubMed ID: 37088829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging.
    Jiang Y; Huang J; Zhen X; Zeng Z; Li J; Xie C; Miao Q; Chen J; Chen P; Pu K
    Nat Commun; 2019 May; 10(1):2064. PubMed ID: 31048701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics.
    Xu C; Huang J; Jiang Y; He S; Zhang C; Pu K
    Nat Biomed Eng; 2023 Mar; 7(3):298-312. PubMed ID: 36550302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imaging-Modality Transformable Characteristics for Improved Biological Applications.
    Duan X; Zhang GQ; Ji S; Zhang Y; Li J; Ou H; Gao Z; Feng G; Ding D
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202116174. PubMed ID: 35030286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Bright Near-Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy.
    Wei X; Huang J; Zhang C; Xu C; Pu K; Zhang Y
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202213791. PubMed ID: 36579889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activatable Semiconducting Oligomer Amphiphile for Near-Infrared Luminescence Imaging of Biothiols.
    Xie C; Lyu Y; Zhen X; Miao Q; Pu K
    ACS Appl Bio Mater; 2018 Oct; 1(4):1147-1153. PubMed ID: 34996155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection.
    Chen C; Zhang X; Gao Z; Feng G; Ding D
    Nat Protoc; 2024 Apr; ():. PubMed ID: 38637702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Activatable Afterglow/MRI Bimodal Nanoprobe with Fast Response to H
    Zeng W; Wu L; Ishigaki Y; Harimoto T; Hu Y; Sun Y; Wang Y; Suzuki T; Chen HY; Ye D
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202111759. PubMed ID: 34791772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model.
    Feng Y; Zhang L; Liu R; Lv Y
    Biosens Bioelectron; 2019 Nov; 144():111671. PubMed ID: 31513961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rechargeable Afterglow Nanotorches for In Vivo Tracing of Cell-Based Microrobots.
    Ma G; Dirak M; Liu Z; Jiang D; Wang Y; Xiang C; Zhang Y; Luo Y; Gong P; Cai L; Kolemen S; Zhang P
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202400658. PubMed ID: 38446006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-Infrared Chemiluminescence Imaging of Chemotherapy-Induced Peripheral Neuropathy.
    Liu J; Huang J; Wei X; Cheng P; Pu K
    Adv Mater; 2024 Mar; 36(11):e2310605. PubMed ID: 38040414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature-Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imaging-Guided Photothermal Therapy.
    Zhen X; Xie C; Pu K
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3938-3942. PubMed ID: 29527761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and synthesis of a small molecular NIR-II chemiluminescence probe for in vivo
    Chen Z; Su L; Wu Y; Liu J; Wu R; Li Q; Wang C; Liu L; Song J
    Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2205186120. PubMed ID: 36787363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-ray/red-light excited ZGGO:Cr,Nd nanoprobes for NIR-I/II afterglow imaging.
    Jiang R; Yang J; Meng Y; Yan D; Liu C; Xu C; Liu Y
    Dalton Trans; 2020 May; 49(18):6074-6083. PubMed ID: 32319478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Activatable Near-Infrared Afterglow Theranostic Prodrug with Self-Sustainable Magnification Effect of Immunogenic Cell Death.
    Gao Z; Jia S; Ou H; Hong Y; Shan K; Kong X; Wang Z; Feng G; Ding D
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202209793. PubMed ID: 35916871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coloring Afterglow Nanoparticles for High-Contrast Time-Gating-Free Multiplex Luminescence Imaging.
    Li Z; Yu N; Zhou J; Li Y; Zhang Y; Huang L; Huang K; Zhao Y; Kelmar S; Yang J; Han G
    Adv Mater; 2020 Dec; 32(49):e2003881. PubMed ID: 33145880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.