BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 38247480)

  • 1. The ncRNAs Involved in the Regulation of Abiotic Stress-Induced Anthocyanin Biosynthesis in Plants.
    Zhou B; Zheng B; Wu W
    Antioxidants (Basel); 2023 Dec; 13(1):. PubMed ID: 38247480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants.
    Li Z; Ahammed GJ
    Plant Physiol Biochem; 2023 Aug; 201():107835. PubMed ID: 37348389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses.
    Naing AH; Kim CK
    Physiol Plant; 2021 Jul; 172(3):1711-1723. PubMed ID: 33605458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response.
    Ma X; Zhao F; Zhou B
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35456943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRNAs and lncRNAs in tomato: Roles in biotic and abiotic stress responses.
    Li Q; Shen H; Yuan S; Dai X; Yang C
    Front Plant Sci; 2022; 13():1094459. PubMed ID: 36714724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation.
    Jha UC; Nayyar H; Jha R; Khurshid M; Zhou M; Mantri N; Siddique KHM
    BMC Plant Biol; 2020 Oct; 20(1):466. PubMed ID: 33046001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses.
    Dabravolski SA; Isayenkov SV
    Plants (Basel); 2023 Jul; 12(13):. PubMed ID: 37447119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance.
    Zhang Y; Zhou Y; Zhu W; Liu J; Cheng F
    Front Plant Sci; 2022; 13():965745. PubMed ID: 36311129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maize SRO1e represses anthocyanin synthesis through regulating the MBW complex in response to abiotic stress.
    Qin L; Sun L; Wei L; Yuan J; Kong F; Zhang Y; Miao X; Xia G; Liu S
    Plant J; 2021 Feb; 105(4):1010-1025. PubMed ID: 33217069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis and transcriptional reprogrammings of MYB superfamily revealed positive insights into abiotic stress responses and anthocyanin accumulation in Carthamus tinctorius L.
    Hong Y; Ahmad N; Zhang J; Lv Y; Zhang X; Ma X; Xiuming L; Na Y
    Mol Genet Genomics; 2022 Jan; 297(1):125-145. PubMed ID: 34978004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROS Regulation During Abiotic Stress Responses in Crop Plants.
    You J; Chan Z
    Front Plant Sci; 2015; 6():1092. PubMed ID: 26697045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture.
    Kaur S; Tiwari V; Kumari A; Chaudhary E; Sharma A; Ali U; Garg M
    J Biotechnol; 2023 Jan; 361():12-29. PubMed ID: 36414125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light Induced Regulation Pathway of Anthocyanin Biosynthesis in Plants.
    Ma Y; Ma X; Gao X; Wu W; Zhou B
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECAP is a key negative regulator mediating different pathways to modulate salt stress-induced anthocyanin biosynthesis in Arabidopsis.
    Li C; Shi L; Li X; Wang Y; Bi Y; Li W; Ma H; Chen B; Zhu L; Fu Y
    New Phytol; 2022 Mar; 233(5):2216-2231. PubMed ID: 34942029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis.
    Xiang M; Ding W; Wu C; Wang W; Ye S; Cai C; Hu X; Wang N; Bai W; Tang X; Zhu C; Yu X; Xu Q; Zheng Y; Ding Z; Lin C; Zhu Q
    Planta; 2021 Aug; 254(3):50. PubMed ID: 34386845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants.
    Begum Y
    Gene; 2022 May; 821():146283. PubMed ID: 35143944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Analysis of Long Non-Coding RNAs Related to UV-B-Induced Anthocyanin Biosynthesis During Blood-Fleshed Peach (
    Zhang M; Zhang X; Wang H; Ye M; Liu Y; Song Z; Du T; Cao H; Song L; Xiao X; Liu J; Zhang L; Song Y; Yang Q; Meng D; Wu J
    Front Genet; 2022; 13():932207. PubMed ID: 36017497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review.
    Shi L; Li X; Fu Y; Li C
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An insight into the roles of regulatory ncRNAs in plants: An abiotic stress and developmental perspective.
    Panchal A; Maurya J; Seni S; Singh RK; Prasad M
    Plant Physiol Biochem; 2023 Aug; 201():107823. PubMed ID: 37327647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long Non-Coding RNAs of Plants in Response to Abiotic Stresses and Their Regulating Roles in Promoting Environmental Adaption.
    Yang H; Cui Y; Feng Y; Hu Y; Liu L; Duan L
    Cells; 2023 Feb; 12(5):. PubMed ID: 36899864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.