BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38247732)

  • 1. Styrene Production in Genetically Engineered
    Noda S; Fujiwara R; Mori Y; Dainin M; Shirai T; Kondo A
    BioTech (Basel); 2024 Jan; 13(1):. PubMed ID: 38247732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.
    Lee K; Bang HB; Lee YH; Jeong KJ
    Microb Cell Fact; 2019 May; 18(1):79. PubMed ID: 31053078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Styrene biosynthesis from glucose by engineered E. coli.
    McKenna R; Nielsen DR
    Metab Eng; 2011 Sep; 13(5):544-54. PubMed ID: 21722749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic optimization of styrene biosynthesis in
    Liu C; Men X; Chen H; Li M; Ding Z; Chen G; Wang F; Liu H; Wang Q; Zhu Y; Zhang H; Xian M
    Biotechnol Biofuels; 2018; 11():14. PubMed ID: 29416559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    J Biosci Bioeng; 2016 Dec; 122(6):730-735. PubMed ID: 27405271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae.
    McKenna R; Thompson B; Pugh S; Nielsen DR
    Microb Cell Fact; 2014 Aug; 13():123. PubMed ID: 25162943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.
    Richard P; Viljanen K; Penttilä M
    AMB Express; 2015; 5():12. PubMed ID: 25852989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae.
    Gottardi M; Knudsen JD; Prado L; Oreb M; Branduardi P; Boles E
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):4883-4893. PubMed ID: 28353001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals.
    Webb JP; Paiva AC; Rossoni L; Alstrom-Moore A; Springthorpe V; Vaud S; Yeh V; Minde DP; Langer S; Walker H; Hounslow A; Nielsen DR; Larson T; Lilley K; Stephens G; Thomas GH; Bonev BB; Kelly DJ; Conradie A; Green J
    Metab Eng; 2022 Jul; 72():133-149. PubMed ID: 35289291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of phenylalanine ammonia lyases in Synechocystis sp. PCC 6803 and subsequent improvements of sustainable production of phenylpropanoids.
    Kukil K; Lindberg P
    Microb Cell Fact; 2022 Jan; 21(1):8. PubMed ID: 35012528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids.: Part II: Application in different reactor concepts for the production of (S)-2-chloro-phenylalanine.
    Dreßen A; Hilberath T; Mackfeld U; Rudat J; Pohl M
    J Biotechnol; 2017 Sep; 258():158-166. PubMed ID: 28472673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering styrene biosynthesis: designing a functional trans-cinnamic acid decarboxylase in Pseudomonas.
    García-Franco A; Godoy P; Duque E; Ramos JL
    Microb Cell Fact; 2024 Feb; 23(1):69. PubMed ID: 38419048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Yuan J; Lukito BR; Li Z
    ACS Synth Biol; 2019 Aug; 8(8):1801-1808. PubMed ID: 31339686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.
    Machas MS; McKenna R; Nielsen DR
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28799719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL).
    Dreßen A; Hilberath T; Mackfeld U; Billmeier A; Rudat J; Pohl M
    J Biotechnol; 2017 Sep; 258():148-157. PubMed ID: 28392421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent enzyme-coupled activity assay for phenylalanine ammonia-lyases.
    Moisă ME; Amariei DA; Nagy EZA; Szarvas N; Toșa MI; Paizs C; Bencze LC
    Sci Rep; 2020 Oct; 10(1):18418. PubMed ID: 33116226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot synthesis of (R)- and (S)-phenylglycinol from bio-based L-phenylalanine by an artificial biocatalytic cascade.
    Zhang J; Qi N; Gao L; Li J; Zhang C; Chang H
    Bioresour Bioprocess; 2021 Oct; 8(1):97. PubMed ID: 38650191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered, Scalable Production of Optically Pure l-Phenylalanines Using Phenylalanine Ammonia-Lyase from
    Tork SD; Nagy EZA; Tomoiagă RB; Bencze LC
    J Org Chem; 2023 Jan; 88(2):852-862. PubMed ID: 36583610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli.
    Vargas-Tah A; Martínez LM; Hernández-Chávez G; Rocha M; Martínez A; Bolívar F; Gosset G
    Microb Cell Fact; 2015 Jan; 14():6. PubMed ID: 25592545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.