These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38248611)

  • 1. Learning Quadrupedal High-Speed Running on Uneven Terrain.
    Han X; Zhao M
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation.
    Zhu H; Wang D; Boyd N; Zhou Z; Ruan L; Zhang A; Ding N; Zhao Y; Luo J
    Front Robot AI; 2021; 8():724138. PubMed ID: 34765648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LORM: a novel reinforcement learning framework for biped gait control.
    Zhang W; Jiang Y; Farrukh FUD; Zhang C; Zhang D; Wang G
    PeerJ Comput Sci; 2022; 8():e927. PubMed ID: 35494792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uneven Terrain Walking with Linear and Angular Momentum Allocation.
    He Z; Piao S; Leng X; Wu Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning quadrupedal locomotion on deformable terrain.
    Choi S; Ji G; Park J; Kim H; Mun J; Lee JH; Hwangbo J
    Sci Robot; 2023 Jan; 8(74):eade2256. PubMed ID: 36696473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning and Reusing Quadruped Robot Movement Skills from Biological Dogs for Higher-Level Tasks.
    Wan Q; Luo A; Meng Y; Zhang C; Chi W; Zhang S; Liu Y; Zhu Q; Kong S; Yu J
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An insect-scale robot reveals the effects of different body dynamics regimes during open-loop running in feature-laden terrain.
    Schiebel PE; Shum J; Cerbone H; Wood RJ
    Bioinspir Biomim; 2022 Feb; 17(2):. PubMed ID: 34874292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation.
    Cruz Ulloa C; Sánchez L; Del Cerro J; Barrientos A
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots.
    Hao Q; Wang Z; Wang J; Chen G
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable stiffness locomotion with guaranteed stability for quadruped robots traversing uneven terrains.
    Zhao X; Wu Y; You Y; Laurenzi A; Tsagarakis N
    Front Robot AI; 2022; 9():874290. PubMed ID: 36105760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Optimization-Based Locomotion Controller for Quadruped Robots Leveraging Cartesian Impedance Control.
    Xin G; Wolfslag W; Lin HC; Tiseo C; Mistry M
    Front Robot AI; 2020; 7():48. PubMed ID: 33501216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Dynamic Locomotion Control of Quadruped Robot with Perception-Less Terrain Adaptation.
    Wang L; Meng L; Kang R; Liu B; Gu S; Zhang Z; Meng F; Ming A
    Cyborg Bionic Syst; 2022; 2022():9816495. PubMed ID: 36285308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hierarchical Framework for Quadruped Robots Gait Planning Based on DDPG.
    Li Y; Chen Z; Wu C; Mao H; Sun P
    Biomimetics (Basel); 2023 Aug; 8(5):. PubMed ID: 37754133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning quadrupedal locomotion over challenging terrain.
    Lee J; Hwangbo J; Wellhausen L; Koltun V; Hutter M
    Sci Robot; 2020 Oct; 5(47):. PubMed ID: 33087482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continual Reinforcement Learning for Quadruped Robot Locomotion.
    Gai S; Lyu S; Zhang H; Wang D
    Entropy (Basel); 2024 Jan; 26(1):. PubMed ID: 38275501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Fall Recovery Control for Legged Robots via Reinforcement Learning.
    Li S; Pang Y; Bai P; Hu S; Wang L; Wang G
    Biomimetics (Basel); 2024 Mar; 9(4):. PubMed ID: 38667204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain.
    Song G; Ai Q; Tong H; Xu J; Zhu S
    Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.