BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38248967)

  • 1. The Metabolic Regulation of Amino Acid Synthesis Counteracts Reactive Nitrogen Stress via
    Amahisa M; Tsukagoshi M; Kadooka C; Masuo S; Takeshita N; Doi Y; Takagi H; Takaya N
    J Fungi (Basel); 2024 Jan; 10(1):. PubMed ID: 38248967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional autoregulation and inhibition of mRNA translation of amino acid regulator gene cpcA of filamentous fungus Aspergillus nidulans.
    Hoffmann B; Valerius O; Andermann M; Braus GH
    Mol Biol Cell; 2001 Sep; 12(9):2846-57. PubMed ID: 11553722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme-biosynthetic porphobilinogen deaminase protects Aspergillus nidulans from nitrosative stress.
    Zhou S; Narukami T; Nameki M; Ozawa T; Kamimura Y; Hoshino T; Takaya N
    Appl Environ Microbiol; 2012 Jan; 78(1):103-9. PubMed ID: 22038601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of the cross-pathway control on the regulation of lysine and penicillin biosynthesis in Aspergillus nidulans.
    Busch S; Bode HB; Brakhage AA; Braus GH
    Curr Genet; 2003 Jan; 42(4):209-19. PubMed ID: 12589472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gene encoding the major proline transporter of Aspergillus nidulans is upregulated during conidiospore germination and in response to proline induction and amino acid starvation.
    Tazebay UH; Sophianopoulou V; Scazzocchio C; Diallinas G
    Mol Microbiol; 1997 Apr; 24(1):105-17. PubMed ID: 9140969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple fungal enzymes possess cysteine synthase activity in vitro.
    Brzywczy J; Natorff R; Sieńko M; Paszewski A
    Res Microbiol; 2007 Jun; 158(5):428-36. PubMed ID: 17482430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Cross-Pathway Control Regulator CpcA in the Growth and Extracellular Enzyme Production of Penicillium oxalicum.
    Pan Y; Gao L; Zhang X; Qin Y; Liu G; Qu Y
    Curr Microbiol; 2020 Jan; 77(1):49-54. PubMed ID: 31701162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of jlbA mRNA synthesis for a putative bZIP protein of Aspergillus nidulans by amino acid starvation.
    Strittmatter AW; Irniger S; Braus GH
    Curr Genet; 2001 Jul; 39(5-6):327-34. PubMed ID: 11525406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for an arginine-dependent route for the synthesis of NO in the model filamentous fungus Aspergillus nidulans.
    Franco-Cano A; Marcos AT; Strauss J; Cánovas D
    Environ Microbiol; 2021 Nov; 23(11):6924-6939. PubMed ID: 34448331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiamine synthesis regulates the fermentation mechanisms in the fungus Aspergillus nidulans.
    Shimizu M; Masuo S; Itoh E; Zhou S; Kato M; Takaya N
    Biosci Biotechnol Biochem; 2016 Sep; 80(9):1768-75. PubMed ID: 26967817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of hisHF transcription of Aspergillus nidulans by adenine and amino acid limitation.
    Valerius O; Draht O; Kübler E; Adler K; Hoffmann B; Braus GH
    Fungal Genet Biol; 2001 Feb; 32(1):21-31. PubMed ID: 11277623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Aspergillus niger GCN4 homologue, cpcA, is transcriptionally regulated and encodes an unusual leucine zipper.
    Wanke C; Eckert S; Albrecht G; van Hartingsveldt W; Punt PJ; van den Hondel CA; Braus GH
    Mol Microbiol; 1997 Jan; 23(1):23-33. PubMed ID: 9004217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans.
    Hoffmann B; Wanke C; Lapaglia SK; Braus GH
    Mol Microbiol; 2000 Jul; 37(1):28-41. PubMed ID: 10931303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen metabolism of Aspergillus and its role in pathogenicity.
    Krappmann S; Braus GH
    Med Mycol; 2005 May; 43 Suppl 1():S31-40. PubMed ID: 16110790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide reactivities of the two globins of the foodborne pathogen Campylobacter jejuni: roles in protection from nitrosative stress and analysis of potential reductants.
    Tinajero-Trejo M; Vreugdenhil A; Sedelnikova SE; Davidge KS; Poole RK
    Nitric Oxide; 2013 Nov; 34():65-75. PubMed ID: 23764490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid acquisition, cross-pathway control, and virulence in Aspergillus.
    Braus GH; Sasse C; Krappmann S
    Med Mycol; 2006 Sep; 44(Supplement_1):S91-S94. PubMed ID: 30408941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-transcriptional control and kinetic characterization of proline transport in germinating conidiospores of Aspergillus nidulans.
    Tazebay UH; Sophianopoulou V; Cubero B; Scazzocchio C; Diallinas G
    FEMS Microbiol Lett; 1995 Oct; 132(1-2):27-37. PubMed ID: 7590163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KAEA (SUDPRO), a member of the ubiquitous KEOPS/EKC protein complex, regulates the arginine catabolic pathway and the expression of several other genes in Aspergillus nidulans.
    Dzikowska A; Grzelak A; Gawlik J; Szewczyk E; Mrozek P; Borsuk P; Koper M; Empel J; Szczęsny P; Piłsyk S; Pękala M; Weglenski P
    Gene; 2015 Dec; 573(2):310-20. PubMed ID: 26210809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Genes Involved in the Synthesis of the Fungal Cell Wall Component Nigeran and Regulation of Its Polymerization in Aspergillus
    Uechi K; Yaguchi H; Tokashiki J; Taira T; Mizutani O
    Appl Environ Microbiol; 2021 Oct; 87(21):e0114421. PubMed ID: 34406826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans.
    Chen Y; Dong L; Alam MA; Pardeshi L; Miao Z; Wang F; Tan K; Hynes MJ; Kelly JM; Wong KH
    mBio; 2021 Feb; 13(1):e0373421. PubMed ID: 35164551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.