BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38249479)

  • 1. Construction of
    Yin Y; Wang P; Wang X; Wen J
    Front Microbiol; 2023; 14():1342199. PubMed ID: 38249479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Production of Fengycin in
    Gao GR; Hou ZJ; Ding MZ; Bai S; Wei SY; Qiao B; Xu QM; Cheng JS; Yuan YJ
    ACS Synth Biol; 2022 Dec; 11(12):4065-4076. PubMed ID: 36379006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis.
    Vahidinasab M; Lilge L; Reinfurt A; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R
    Microb Cell Fact; 2020 Nov; 19(1):205. PubMed ID: 33167976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of fengycin from D-xylose through the expression and metabolic regulation of the Dahms pathway.
    Gao W; Yin Y; Wang P; Tan W; He M; Wen J
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2557-2567. PubMed ID: 35362719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.
    Yan P; Wu Y; Yang L; Wang Z; Chen T
    Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures.
    Chen T; Liu WX; Fu J; Zhang B; Tang YJ
    J Biotechnol; 2013 Dec; 168(4):499-505. PubMed ID: 24120578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of promoters on the production of fengycin in Bacillus spp.
    Yaseen Y; Gancel F; Drider D; Béchet M; Jacques P
    Res Microbiol; 2016 May; 167(4):272-281. PubMed ID: 26912322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm.
    Wei YH; Wang LC; Chen WC; Chen SY
    Int J Mol Sci; 2010 Nov; 11(11):4526-38. PubMed ID: 21151454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and characterization of recombinant Bacillus subtilis JY123 able to transport xylose efficiently.
    Park YC; Jun SY; Seo JH
    J Biotechnol; 2012 Nov; 161(4):402-6. PubMed ID: 22910119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H
    Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC
    Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemically engineering
    Wang S; Wang R; Zhao X; Ma G; Liu N; Zheng Y; Tan J; Qi G
    Front Bioeng Biotechnol; 2022; 10():961535. PubMed ID: 36159666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing fengycin production in the co-culture of Bacillus subtilis and Corynebacterium glutamicum by engineering proline transporter.
    Gao GR; Wei SY; Ding MZ; Hou ZJ; Wang DJ; Xu QM; Cheng JS; Yuan YJ
    Bioresour Technol; 2023 Sep; 383():129229. PubMed ID: 37244302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Engineered Microbial Consortium Provides Precursors for Fengycin Production by
    Wei SY; Gao GR; Ding MZ; Cao CY; Hou ZJ; Cheng JS; Yuan YJ
    J Nat Prod; 2024 Jan; 87(1):28-37. PubMed ID: 38204395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of
    He M; Wen J; Yin Y; Wang P
    3 Biotech; 2021 Oct; 11(10):448. PubMed ID: 34631349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
    Fan H; Ru J; Zhang Y; Wang Q; Li Y
    Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2.
    Wang P; Guo Q; Ma Y; Li S; Lu X; Zhang X; Ma P
    Microbiol Res; 2015 Sep; 178():42-50. PubMed ID: 26302846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production.
    Yaseen Y; Gancel F; Béchet M; Drider D; Jacques P
    Arch Microbiol; 2017 Dec; 199(10):1371-1382. PubMed ID: 28735377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1.
    Park YC; Kim SG; Park K; Lee KH; Seo JH
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):297-302. PubMed ID: 15375635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis.
    Wu Y; Chen T; Liu Y; Lv X; Li J; Du G; Ledesma-Amaro R; Liu L
    Metab Eng; 2018 Sep; 49():232-241. PubMed ID: 30176395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.