These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38250349)

  • 1. Impact of Graphitization Degree on the Electrochemical and Thermal Properties of Coal.
    Xu X; Cao D; Wei Y; Wang A; Chen G; Wang T; Wang G; Chen X
    ACS Omega; 2024 Jan; 9(2):2443-2456. PubMed ID: 38250349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM.
    Li K; Liu Q; Cheng H; Hu M; Zhang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119286. PubMed ID: 33340959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility for High-Temperature Graphitization of Deformed Meager Coal.
    Guo X; Huan X; Chen X
    ACS Omega; 2023 Oct; 8(42):39154-39167. PubMed ID: 37901580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Heterogeneous Evolution of the Nanostructure of Coal-Based Graphite.
    Cao D; Wang L; Ding Z; Peng Y; Li Y
    J Nanosci Nanotechnol; 2021 Jan; 21(1):670-681. PubMed ID: 33213667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral Composition and Graphitization Structure Characteristics of Contact Thermally Altered Coal.
    Luo H; Liang W; Wei C; Wu D; Gao X; Hu G
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defects boost graphitization for highly conductive graphene films.
    Zhang Q; Wei Q; Huang K; Liu Z; Ma W; Zhang Z; Zhang Y; Cheng HM; Ren W
    Natl Sci Rev; 2023 Jul; 10(7):nwad147. PubMed ID: 37416318
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Guo X; Liu Y; Tian X; Tao Z; Yan X; Liu Z
    RSC Adv; 2023 Feb; 13(9):6075-6086. PubMed ID: 36814883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Thermal Conductive Graphite Films Derived from the Graphitization of Chemically Imidized Polyimide Films.
    Sun M; Wang X; Ye Z; Chen X; Xue Y; Yang G
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advantages of Structure and Electrochemical Properties of Graphene Prepared from Tectonically Deformed Coal.
    Zhang H; Zhang Y; Li J; Ma Z
    ACS Omega; 2023 Jul; 8(28):25142-25154. PubMed ID: 37483208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolytic Modification of Heavy Coal Tar by Multi-Polymer Blending: Preparation of Ordered Carbonaceous Mesophase.
    Zhang L; Liu C; Jia Y; Mu Y; Yan Y; Huang P
    Polymers (Basel); 2024 Jan; 16(1):. PubMed ID: 38201826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Nanostructure Evolution in Coal Molecules of Different Ranks.
    Meng J; Zhong R; Niu J; Li S; Nie B
    J Nanosci Nanotechnol; 2021 Jan; 21(1):405-421. PubMed ID: 33213640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes and Migration of Coal-Derived Minerals on the Graphitization Process of Anthracite.
    Wang L; Qiu T; Guo Z; Shen X; Yang J; Wang Y
    ACS Omega; 2021 Jan; 6(1):180-187. PubMed ID: 33458470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Cost Transformation of Biomass-Derived Carbon to High-Performing Nano-graphite via Low-Temperature Electrochemical Graphitization.
    Thapaliya BP; Luo H; Halstenberg P; Meyer HM; Dunlap JR; Dai S
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4393-4401. PubMed ID: 33433992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.
    Wang R; Lu G; Qiao W; Yu J
    Langmuir; 2016 Aug; 32(34):8583-92. PubMed ID: 27482724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of crystal structure and electronic properties on lithium storage performance of artificial graphite.
    Liu Z; Shi Y; Yang Q; Shen H; Fan Q; Nie H
    RSC Adv; 2023 Oct; 13(43):29923-29930. PubMed ID: 37842664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boric Acid as A Low-Temperature Graphitization Aid and Its Impact on Structure and Properties of Cellulose-Based Carbon Fibers.
    Hückstaedt T; Erdmann J; Lehmann A; Protz R; Ganster J
    Polymers (Basel); 2023 Nov; 15(21):. PubMed ID: 37959990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional X-ray Reflections from Anthracite and Meta-Anthracite.
    Ergun S; Mentser M; O'donnell HJ
    Science; 1960 Nov; 132(3436):1314-6. PubMed ID: 17753063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphitization behaviour of chemically derived graphene sheets.
    Long D; Li W; Qiao W; Miyawaki J; Yoon SH; Mochida I; Ling L
    Nanoscale; 2011 Sep; 3(9):3652-6. PubMed ID: 21805004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.
    Zhao L; Zhao X; Burke LT; Bennett JC; Dunlap RA; Obrovac MN
    ChemSusChem; 2017 Sep; 10(17):3409-3418. PubMed ID: 28763572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Graphite Filler Type on the Thermal Conductivity and Mechanical Behavior of Polysulfone-Based Composites.
    Mohammad H; Stepashkin AA; Tcherdyntsev VV
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.