These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38250413)

  • 1. Research on Flow Patterns of Two-Phase Fracturing Fluid in Hydraulic Fracture Considering the Fluid Leak-off.
    Chen Y; Li J; Song Q; Bu C; Ye K; He F; Lv Z; Chen X
    ACS Omega; 2024 Jan; 9(2):2432-2442. PubMed ID: 38250413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study on a Liquid-Solid Phase-Change Autogenous Proppant Fracturing Fluid System.
    Chen Y; Sang Y; Guo J; Yang J; Chen W; Zeng J; Tang B; He T
    ACS Omega; 2023 Mar; 8(10):9101-9110. PubMed ID: 36936340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique.
    Quosay AA; Knez D; Ziaja J
    PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation of Proppant Transport in Major and Branching Fractures Based on CFD-DEM.
    Zuo L; Li X; Han Z; You Q; Liu X
    ACS Omega; 2024 Mar; 9(11):13163-13171. PubMed ID: 38524476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracturing-Fluid Flowback Simulation with Consideration of Proppant Transport in Hydraulically Fractured Shale Wells.
    Wang F; Chen Q; Lyu X; Zhang S
    ACS Omega; 2020 Apr; 5(16):9491-9502. PubMed ID: 32363301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of Proppant Flowback on Fracture Conductivity in Different Fracturing Fluids and Flowback Conditions.
    Guo S; Wang B; Li Y; Hao H; Zhang M; Liang T
    ACS Omega; 2022 Mar; 7(8):6682-6690. PubMed ID: 35252663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation and Application of High-Efficiency Network Fracturing Technology for Deep Shale Gas in the Southern Sichuan Basin.
    Zhao Z; Zheng Y; Zeng B; Song Y
    ACS Omega; 2022 Apr; 7(16):14276-14282. PubMed ID: 35573210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Experimental Study of Fracture Conductivity of Carbonate Rocks under Different Stimulation Types.
    Xiao H; Xia X; Wang C; Tan X; Zhang H
    ACS Omega; 2023 Dec; 8(51):49175-49190. PubMed ID: 38162798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation on fracturing effects in hydraulic sand fracturing with acoustic emission and 3d laser scanning.
    Zhang S; Wang C; Zhu G; Gao G; Zhou H
    Sci Rep; 2023 Jul; 13(1):11539. PubMed ID: 37460604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Investigation of Hydraulic Fracturing Fluid Based on Pseudo Gemini Surfactant with Polysaccharide Addition.
    Silin M; Magadova L; Poteshkina K; Krisanova P; Filatov A; Kryukov D
    Gels; 2023 Dec; 10(1):. PubMed ID: 38247753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gemini Surfactant with Unsaturated Long Tails for Viscoelastic Surfactant (VES) Fracturing Fluid Used in Tight Reservoirs.
    Huang F; Pu C; Lu L; Pei Z; Gu X; Lin S; Wu F; Liu J
    ACS Omega; 2021 Jan; 6(2):1593-1602. PubMed ID: 33490819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Proppant Size on the Proppant Embedment Depth.
    Ding X; Wang T; Dong M; Chen N
    ACS Omega; 2022 Oct; 7(39):35044-35054. PubMed ID: 36211084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Proppant Settling Velocity in Fiber-Containing Fracturing Fluids.
    Bai Z; Li M
    ACS Omega; 2023 Sep; 8(35):31857-31869. PubMed ID: 37692221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex Fluids and Hydraulic Fracturing.
    Barbati AC; Desroches J; Robisson A; McKinley GH
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():415-53. PubMed ID: 27070765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Evaluation of the Rheological Properties and Influencing Factors of Gel Fracturing Fluid Mixed with CO
    Wang M; Wu W; Chen S; Li S; Li T; Ni G; Fu Y; Zhou W
    Gels; 2022 Aug; 8(9):. PubMed ID: 36135238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proppant Settlement and Long-Term Conductivity Calculation in Complex Fractures.
    Wang X; Zhang X; Zhang M; Zhang Q; Dong P; Ding H; Liu X
    ACS Omega; 2024 Mar; 9(11):12789-12800. PubMed ID: 38524481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological and fracturing characteristics of a cationic guar gum.
    Wang T; Ye J
    Int J Biol Macromol; 2023 Jan; 224():196-206. PubMed ID: 36265536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Investigation and Performance Evaluation of Modified Viscoelastic Surfactant (VES) as a New Thickening Fracturing Fluid.
    Chieng ZH; Mohyaldinn ME; Hassan AM; Bruining H
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32629958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Prediction of the Proppant Distribution in a Hydraulically Fractured Stage.
    Alajmei S
    ACS Omega; 2023 Oct; 8(40):37080-37089. PubMed ID: 37841146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field experiments of different fracturing designs in tight conglomerate oil reservoirs.
    Zhang D; Ma S; Zhang J; Zhu Y; Wang B; Zhu J; Fan X; Yang H; Liang T
    Sci Rep; 2022 Feb; 12(1):3220. PubMed ID: 35217696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.