These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 38250438)

  • 1. Plant responses to climate change, how global warming may impact on food security: a critical review.
    Janni M; Maestri E; Gullì M; Marmiroli M; Marmiroli N
    Front Plant Sci; 2023; 14():1297569. PubMed ID: 38250438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses.
    Roychowdhury R; Das SP; Gupta A; Parihar P; Chandrasekhar K; Sarker U; Kumar A; Ramrao DP; Sudhakar C
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches.
    Haq SAU; Bashir T; Roberts TH; Husaini AM
    Mol Biol Rep; 2023 Dec; 51(1):41. PubMed ID: 38158512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity.
    Janni M; Gullì M; Maestri E; Marmiroli M; Valliyodan B; Nguyen HT; Marmiroli N
    J Exp Bot; 2020 Jun; 71(13):3780-3802. PubMed ID: 31970395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding.
    Hafeez A; Ali B; Javed MA; Saleem A; Fatima M; Fathi A; Afridi MS; Aydin V; Oral MA; Soudy FA
    Planta; 2023 Oct; 258(5):97. PubMed ID: 37823963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigating climate change and pandemic impacts on global food security: dual sustainable agriculture approach (2S approach).
    Sarker PK; Paul AS; Karmoker D
    Planta; 2023 Oct; 258(6):104. PubMed ID: 37878120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea.
    Kumari P; Rastogi A; Yadav S
    Mol Biol Rep; 2020 Jun; 47(6):4659-4670. PubMed ID: 32133603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement.
    Zenda T; Wang N; Dong A; Zhou Y; Duan H
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing Crop Wild Diversity for Climate Change Adaptation.
    Cortés AJ; López-Hernández F
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34065368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat and Drought Stresses in Crops and Approaches for Their Mitigation.
    Lamaoui M; Jemo M; Datla R; Bekkaoui F
    Front Chem; 2018; 6():26. PubMed ID: 29520357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraspecific responses of plant productivity and crop yield to experimental warming: A global synthesis.
    Shao J; Li G; Li Y; Zhou X
    Sci Total Environ; 2022 Sep; 840():156685. PubMed ID: 35714738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture.
    Verma A; Shameem N; Jatav HS; Sathyanarayana E; Parray JA; Poczai P; Sayyed RZ
    Front Plant Sci; 2022; 13():953836. PubMed ID: 35865289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global warming, population growth, and natural resources for food production.
    Pimentel D
    Soc Nat Resour; 1991; 4(4):347-63. PubMed ID: 12344889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
    Weckwerth W
    J Proteomics; 2011 Dec; 75(1):284-305. PubMed ID: 21802534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change impacts on plant pathogens, food security and paths forward.
    Singh BK; Delgado-Baquerizo M; Egidi E; Guirado E; Leach JE; Liu H; Trivedi P
    Nat Rev Microbiol; 2023 Oct; 21(10):640-656. PubMed ID: 37131070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.