These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38250449)

  • 41. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus.
    Li X; Lei M; Yan Z; Wang Q; Chen A; Sun J; Luo D; Wang Y
    New Phytol; 2014 Jan; 201(2):531-544. PubMed ID: 24164597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Grafting analysis indicates that malfunction of TRICOT in the root causes a nodulation-deficient phenotype in Lotus japonicus.
    Suzaki T; Kawaguchi M
    Plant Signal Behav; 2013 Mar; 8(3):e23497. PubMed ID: 23333956
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Sinorhizobium fredii HH103 type III secretion system effector NopC blocks nodulation with Lotus japonicus Gifu.
    Jiménez-Guerrero I; Acosta-Jurado S; Medina C; Ollero FJ; Alias-Villegas C; Vinardell JM; Pérez-Montaño F; López-Baena FJ
    J Exp Bot; 2020 Oct; 71(19):6043-6056. PubMed ID: 32589709
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactive Sulfur Species Produced by Cystathionine γ-lyase Function in the Establishment of Mesorhizobium loti-Lotus japonicus Symbiosis.
    Fukudome M; Ishizaki H; Shimokawa Y; Mori T; Uchi-Fukudome N; Umnajkitikorn K; Murakami EI; Uchiumi T; Kawaguchi M
    Microbes Environ; 2023; 38(3):. PubMed ID: 37704435
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of the Lotus japonicus symbiotic mutant lot1 that shows a reduced nodule number and distorted trichomes.
    Ooki Y; Banba M; Yano K; Maruya J; Sato S; Tabata S; Saeki K; Hayashi M; Kawaguchi M; Izui K; Hata S
    Plant Physiol; 2005 Apr; 137(4):1261-71. PubMed ID: 15793069
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging in Lotus japonicus.
    Webb KJ; Skøt L; Nicholson MN; Jørgensen B; Mizen S
    Mol Plant Microbe Interact; 2000 Jun; 13(6):606-16. PubMed ID: 10830260
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-throughput and targeted genotyping of Lotus japonicus LORE1 insertion mutants.
    Urbański DF; Małolepszy A; Stougaard J; Andersen SU
    Methods Mol Biol; 2013; 1069():119-46. PubMed ID: 23996313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia.
    Cummings SP; Gyaneshwar P; Vinuesa P; Farruggia FT; Andrews M; Humphry D; Elliott GN; Nelson A; Orr C; Pettitt D; Shah GR; Santos SR; Krishnan HB; Odee D; Moreira FM; Sprent JI; Young JP; James EK
    Environ Microbiol; 2009 Oct; 11(10):2510-25. PubMed ID: 19555380
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity.
    Lohar DP; VandenBosch KA
    J Exp Bot; 2005 Jun; 56(416):1643-50. PubMed ID: 15824071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities.
    Zgadzaj R; Garrido-Oter R; Jensen DB; Koprivova A; Schulze-Lefert P; Radutoiu S
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7996-E8005. PubMed ID: 27864511
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inoculation insensitive promoters for cell type enriched gene expression in legume roots and nodules.
    Gavrilovic S; Yan Z; Jurkiewicz AM; Stougaard J; Markmann K
    Plant Methods; 2016; 12():4. PubMed ID: 26807140
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nodulation gene mutants of Mesorhizobium loti R7A-nodZ and nolL mutants have host-specific phenotypes on Lotus spp.
    Rodpothong P; Sullivan JT; Songsrirote K; Sumpton D; Cheung KW; Thomas-Oates J; Radutoiu S; Stougaard J; Ronson CW
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1546-54. PubMed ID: 19888820
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lotus japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes Involved in Their Biosynthesis In Planta.
    Suzuki H; Fukushima EO; Shimizu Y; Seki H; Fujisawa Y; Ishimoto M; Osakabe K; Osakabe Y; Muranaka T
    Plant Cell Physiol; 2019 Nov; 60(11):2496-2509. PubMed ID: 31418782
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus.
    Tominaga A; Gondo T; Akashi R; Zheng SH; Arima S; Suzuki A
    J Plant Res; 2012 May; 125(3):395-406. PubMed ID: 22009016
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti.
    Yokota K; Fukai E; Madsen LH; Jurkiewicz A; Rueda P; Radutoiu S; Held M; Hossain MS; Szczyglowski K; Morieri G; Oldroyd GE; Downie JA; Nielsen MW; Rusek AM; Sato S; Tabata S; James EK; Oyaizu H; Sandal N; Stougaard J
    Plant Cell; 2009 Jan; 21(1):267-84. PubMed ID: 19136645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Symbiotic competence in Lotus japonicus is affected by plant nitrogen status: transcriptomic identification of genes affected by a new signalling pathway.
    Omrane S; Ferrarini A; D'Apuzzo E; Rogato A; Delledonne M; Chiurazzi M
    New Phytol; 2009; 183(2):380-394. PubMed ID: 19500268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutamine synthetase I-deficiency in Mesorhizobium loti differentially affects nodule development and activity in Lotus japonicus.
    Chungopast S; Thapanapongworakul P; Matsuura H; Van Dao T; Asahi T; Tada K; Tajima S; Nomura M
    J Plant Physiol; 2014 Mar; 171(5):104-8. PubMed ID: 24484964
    [TBL] [Abstract][Full Text] [Related]  

  • 58. crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus.
    Tansengco ML; Hayashi M; Kawaguchi M; Imaizumi-Anraku H; Murooka Y
    Plant Physiol; 2003 Mar; 131(3):1054-63. PubMed ID: 12644658
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus.
    Kouchi H; Shimomura K; Hata S; Hirota A; Wu GJ; Kumagai H; Tajima S; Suganuma N; Suzuki A; Aoki T; Hayashi M; Yokoyama T; Ohyama T; Asamizu E; Kuwata C; Shibata D; Tabata S
    DNA Res; 2004 Aug; 11(4):263-74. PubMed ID: 15500251
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sinorhizobium fredii HH103 Invades Lotus burttii by Crack Entry in a Nod Factor-and Surface Polysaccharide-Dependent Manner.
    Acosta-Jurado S; Rodríguez-Navarro DN; Kawaharada Y; Perea JF; Gil-Serrano A; Jin H; An Q; Rodríguez-Carvajal MA; Andersen SU; Sandal N; Stougaard J; Vinardell JM; Ruiz-Sainz JE
    Mol Plant Microbe Interact; 2016 Dec; 29(12):925-937. PubMed ID: 27827003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.